×

Involution models of finite Coxeter groups. (English) Zbl 1149.20011

Author’s summary: Let \(G\) be a finite Coxeter group. Using previous results on Weyl groups, and covering the cases of non-crystallographic groups, we show that \(G\) has an involution model if and only if all of its irreducible factors are of type \(A_n\), \(B_n\), \(D_{2n+1}\), \(H_3\), or \(I_2(n)\).

MSC:

20C15 Ordinary representations and characters
20F55 Reflection and Coxeter groups (group-theoretic aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baddeley R. W., J. London Math. Soc. 44 pp 55– (2) · Zbl 0757.20003 · doi:10.1112/jlms/s2-44.1.55
[2] DOI: 10.1016/0021-8693(73)90065-3 · Zbl 0275.20016 · doi:10.1016/0021-8693(73)90065-3
[3] DOI: 10.1016/j.jalgebra.2004.02.012 · Zbl 1053.20006 · doi:10.1016/j.jalgebra.2004.02.012
[4] Grove L. C., J. Reine Angew. Math. 265 pp 160– (1974) · Zbl 0275.20015 · doi:10.1515/crll.1974.265.160
[5] Howlett R. B., J. London Math. Soc. 21 pp 62– (2) · Zbl 0427.20040 · doi:10.1112/jlms/s2-21.1.62
[6] DOI: 10.1007/BF01459500 · Zbl 0832.20026 · doi:10.1007/BF01459500
[7] DOI: 10.1017/S0004972700005554 · Zbl 0531.20017 · doi:10.1017/S0004972700005554
[8] DOI: 10.1017/S0004972700029774 · Zbl 0738.20007 · doi:10.1017/S0004972700029774
[9] DOI: 10.1080/00927878208822739 · Zbl 0531.20016 · doi:10.1080/00927878208822739
[10] DOI: 10.1016/0022-4049(88)90036-9 · Zbl 0655.20004 · doi:10.1016/0022-4049(88)90036-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.