Baier, Robert Generalized Steiner selections applied to standard problems of set-valued numerical analysis. (English) Zbl 1149.28007 Staicu, Vasile (ed.), Differential equations, chaos and variational problems. Papers from the conference “Views on ODE’s”, Aveiro, Portugal, June 2006. Basel: Birkhäuser (ISBN 978-3-7643-8481-4/hbk). Progress in Nonlinear Differential Equations and Their Applications 75, 49-60 (2008). The paper presents a series of results providing a background for developing numerical methods of evaluation of the Aumann integral of a set-valued mapping using generalized Steiner selectors.A generalized Steiner point of a convex compact set in the Euclidean space is the result of integration of the support set as a function of the unit normal vector over the unit sphere, using an arbitrary Borel measure on the sphere. For a convex-valued mapping and a fixed measure, the generalized Steiner point evaluated pointwisely defines a selector. The evaluation of a generalized Steiner point or a selector is commutable with many set operations, including the evaluation of the Aumann integral of a set-valued mapping. A dense subset of Aumann’s integral can be constructed using a countable set of generalized Steiner selectors generated by continuous measures. For a mapping Lipschitz-continuous with respect to Demyanov’s distance, the author has obtained a linear convergence estimate for the approximation of an Aumann integral by a quadrature formula.For the entire collection see [Zbl 1131.34002]. Reviewer: Dmitry Silin (Berkeley) MSC: 28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections 54C60 Set-valued maps in general topology 65D30 Numerical integration Keywords:generalized {Steiner} point; set-valued mapping; quadrature formula; Demyanov distance × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] Artstein, Z., On the calculus of closed set-valued functions, Indiana Univ. Math. J., 24, 5, 433-441 (1974) · Zbl 0296.28015 · doi:10.1512/iumj.1974.24.24034 [2] Aumann, R., Integrals of set-valued functions, J. Math. Anal. Appl., 12, 1-12 (1965) · Zbl 0163.06301 · doi:10.1016/0022-247X(65)90049-1 [3] Baier, R., Selection Strategies for Set-Valued Runge-Kutta Methods, Lecture Notes in Comp. Sci., 3401, 149-157 (2005) · Zbl 1118.65342 · doi:10.1007/11561163 [4] Baier, R.; Farkhi, E., Regularity and Integration of Set-Valued Maps Represented by Generalized Steiner Points, Set-Valued Anal, 15, 2, 185-207 (2006) · Zbl 1144.28005 · doi:10.1007/s11228-006-0038-0 [5] Baier, R.; Lempio, F.; Kurzhanski, A.; Veliov, V., Computing Aumann’s integral, Modeling Techniques for Uncertain Systems, Proceedings of a Conferences held in Sopron, Hungary, July 6-10, 1992, 71-92 (1994), Basel: Birkhäuser, Basel · Zbl 0828.65021 [6] Benavides, T.; Acedo, G.; Xu, H.-K., Random fixed points of set-valued operators, Proc. Amer. Math. Soc., 124, 3, 831-838 (1996) · Zbl 0841.47032 · doi:10.1090/S0002-9939-96-03062-6 [7] Cohn, D., Measure Theory (1980), Boston: Birkhäuser, Boston · Zbl 0436.28001 [8] Demyanov, V.; Rubinov, A., Constructive nonsmooth analysis (1995), Frankfurt am Main: Peter Lang, Frankfurt am Main · Zbl 0887.49014 [9] Dentcheva, D., Differentiable Selections and Castaing Representations of Multifunctions, J. Math. Anal. Appl., 223, 371-396 (1998) · Zbl 0910.26015 · doi:10.1006/jmaa.1997.5735 [10] Dentcheva, D., Regular Castaing Representations of Multifunctions with Applications to Stochastic Programming, SIAM J. Optim., 10, 732-749 (2000) · Zbl 0999.54015 · doi:10.1137/S1052623498341454 [11] Dentcheva, D., Continuity of Multifunctions Characterized by Steiner Selections, Nonlinear Anal, 47, 1985-1996 (2001) · Zbl 1042.49523 · doi:10.1016/S0362-546X(01)00327-3 [12] Donchev, T.; Farkhi, E., Moduli of smoothness of vector valued functions of a real variable and applications, Numer. Funct. Anal. Optim., 11, 5, 497-509 (1990) · Zbl 0699.65039 · doi:10.1080/01630569008816385 [13] Frankowska, H.; Olech, C.; Clark, D.; Pecelli, G.; Sacksteder, R., R-convexity of the integral of the set-valued functions, Contributions to analysis and geometry. Conference held at the Johns Hopkins University, Baltimore, Maryland, April 24-25, 1980, 117-129 (1981), Baltimore, MD: John Hopkins Univ. Press, Baltimore, MD [14] Hirsch, F.; Lacombe, G., Elements of Functional Analysis (1999), New York: Springer, New York · Zbl 0924.46001 [15] Ioffe, A.; Levin, V., Subdifferentials of convex functions, Trans. Moscow Math. Soc., 26, 1-72 (1972) · Zbl 0281.46039 [16] Rubinov, A.; Akhundov, I., Difference of compact sets in the sense of Demyanov and its application to non-smooth analysis, Optimization, 23, 3, 179-188 (1992) · Zbl 0816.52002 · doi:10.1080/02331939208843757 [17] Sonneborn, L.; van Vleck, F., The bang-bang principle for linear control problems, SIAM J. Control, Ser. A, 2, 151-159 (1965) · Zbl 0196.46702 [18] Veliov, V., Second Order Discrete Approximation to Linear Differential Inclusions, SIAM J. Numer. Anal., 29, 2, 439-451 (1992) · Zbl 0754.65070 · doi:10.1137/0729026 [19] Veliov, V., Discrete approximations of integrals of multivalued mappings, C. R. Acad. Bulgare Sci., 42, 12, 51-54 (1989) · Zbl 0697.41019 [20] Vitale, A., Approximation of convex set-valued functions, J. Approx. Theory, 26, 301-316 (1979) · Zbl 0422.41016 · doi:10.1016/0021-9045(79)90067-4 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.