zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hopf bifurcation analysis of two neurons with three delays. (English) Zbl 1149.34046
The authors study linear stability and give conditions and direction for Hopf bifurcations in the following system of coupled delay differential equations (two neurons with three delays) $$\align \dot{x}(t) & = - x(t) +a_{11}f(x(t-\tau)) +a_{12}f(y(t-\tau_1)) ,\\ \dot{y}(t) & = - y(t) +a_{21}f(x(t-\tau_2)) +a_{22}f(y(t-\tau)). \endalign$$ Here $x$ and $y$ are scalar variables corresponding to two neurons, $\tau_j$ denote the transmission delays, $a_{ij}$ are synaptic weights. Additionally, $f(0)=0$ so that the zero solution is the equilibrium, which produces Hopf bifurcations studied.

34K18Bifurcation theory of functional differential equations
34K20Stability theory of functional-differential equations
34K13Periodic solutions of functional differential equations
Full Text: DOI
[1] Baptistini, M.; Táboas, P.: On the existence and global bifurcation of periodic solutions to planar differential delay equations. J. differential equations 127, 391-425 (1996) · Zbl 0849.34053
[2] Chen, Y.; Wu, J.: Minimal instability and unstable set of a phase-locked periodic orbit in a delayed neural network. Physica D 134, 185-199 (1999) · Zbl 0942.34062
[3] Chen, Y.; Wu, J.: Existence and attraction of a phase-locked oscillation in a delayed network of two neurons. Differential integral equations 14, 1181-1236 (2001) · Zbl 1023.34065
[4] Chen, Y.; Wu, J.: Slowly oscillating periodic solutions for a delayed frustrated network of two neurons. J. math. Anal. appl. 259, 188-208 (2001) · Zbl 0998.34058
[5] Chen, Y.; Wu, J.: The asymptotic shapes of periodic solutions of a singular delay differential systems. J. differential equations 169, 614-632 (2001) · Zbl 0976.34060
[6] Faria, T.: On a planar system modelling a neuron network with memory. J. differential equations 168, 129-149 (2000) · Zbl 0961.92002
[7] Fotios, G.; Andreas, Z.: Bifurcations in a planar system of differential delay equations modeling neural activity. Physica D 159, 215-232 (2001) · Zbl 0984.92505
[8] Godoy, S. M. S.; Dos Reis, J. G.: Stability and existence of periodic solutions of a functional differential equation. J. math. Anal. appl. 198, 381-398 (1996) · Zbl 0851.34074
[9] Gopalsamy, K.; Leung, I.: Delay induced periodicity in a neural netlet of excitation and inhibition. Physica D 89, 395-426 (1996) · Zbl 0883.68108
[10] Guo, S.; Huang, L.: Linear stability and Hopf bifurcation in a two-neuron network with three delays. Internat. J. Bifurcation chaos 8, 2799-2810 (2004) · Zbl 1062.34078
[11] Hale, J.; Lunel, S. V.: Introduction to functional differential equations. (1993) · Zbl 0787.34002
[12] B. Hassard, N.Kazarinoff, Y.H. Wan, Theory of applications of Hopf bifurcation, London Math, Society Lecture Notes, Series, vol. 41, Cambridge University Press, Cambridge, 1981. · Zbl 0474.34002
[13] Li, C.; Chen, G.; Liao, X.; Yu, J.: Hopf bifurcation in an Internet congestion control model. Chaos solitons fractals 19, 853-862 (2004) · Zbl 1058.34090
[14] Li, C.; Chen, G.; Liao, X.; Yu, J.: Hopf bifurcation and chaos in a single inertial neuron model with time delay. European phys. J. B 41, 337-343 (2004)
[15] Li, S.; Liao, X.; Li, C.; Wong, K.: Hopf bifurcation of a two-neuron network with different discrete-time delays. Internat. J. Bifurcation chaos 15, No. 5, 1589-1601 (2005) · Zbl 1092.34563
[16] Liao, X.: Hopf and resonant codimension two bifurcation in van der Pol equation with two time delays. Chaos solitons fractals 23, 857-871 (2005) · Zbl 1076.34087
[17] Mahaffy, J.; Joiner, K.; Zak, P.: A geometric analysis of stability regions for a linear differential equation with two delays. Internat. J. Bifurcations chaos 5, 779-796 (1995) · Zbl 0887.34070
[18] Olien, L.; Bélair, J.: Bifurcations, stability, and monotonicity properties of a delayed neural network model. Physica D 102, 349-363 (1997) · Zbl 0887.34069
[19] Qin, Y.; Wang, L.; Liu, Y.; Zheng, Z.: Stability of the dynamics systems. (1989)
[20] Ruan, S.; Wei, J.: Periodic solutions of planar systems with two delays. Proc. R. Soc. Edinburgh 129A, 1017-1032 (1999) · Zbl 0946.34062
[21] Shampine, L. F.; Thompson, S.: Solving ddes in Matlab. Appl. numer. Math. 37, 441-458 (2001) · Zbl 0983.65079
[22] Shayer, L.; Campbell, S.: Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays. SIAM J. Appl. math. 61, No. 2, 673-700 (2000) · Zbl 0992.92013
[23] Táboas, P.: Periodic solution of a planar delay equation. Proc. R. Soc. Edinburgh 116A, 85-101 (1990) · Zbl 0719.34125
[24] Wei, J.; Ruan, S.: Stability and bifurcation in a neural network model with two delays. Physica D 130, 255-272 (1999) · Zbl 1066.34511
[25] Wu, J.: Symmetric functional differential and neural networks with memory. Trans. amer. Math. soc. 350, 4799-4838 (1998) · Zbl 0905.34034
[26] Wu, J.: Introduction to neural dynamics and signal transmission delay. (2001) · Zbl 0977.34069