×

zbMATH — the first resource for mathematics

On the barotropic compressible Navier-Stokes equations. (English) Zbl 1149.35070
Authors’ abstract: “We consider barotropic compressible Navier-Stokes equations with density dependent viscosity coefficients that vanish on vacuum. We prove the stability of weak solutions in periodic domain \(\Omega = T^N\) and in the whole space \(\Omega = \mathbb{R}^N\), when \(N = 2\) and \(N = 3\). The pressure is given by \(p(\rho^Z) = \rho^\gamma\) and our result holds for any \(\gamma > 1\). Note that our notion of weak solutions is not the usual one. In particular we require some regularity on the initial density (which may still vanish). On the other hand, the initial velocity must satisfy only minimal assumptions (a little more than finite energy). Existence results for such solutions can be obtained from this stability analysis.”
The original existence results for this equation obtained by [P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 2: Compressible models. Oxford: Clarendon Press (1998; Zbl 0908.76004)] in \(2\) and \(3\) dimensions for large enough \(\gamma\) were improved by E. Feireisl, A. Novotný and H. Petzeltová [J. Math. Fluid Mech. 3, No. 4, 358–392 (2001; Zbl 0997.35043)] to any dimension but still with dependent lower bound on \(\gamma\). Under symmetry assumptions the lower bound \(\gamma>1\) was established by, e.g., S. Jiang and P. Zhang [J. Math. Pures Appl. (9) 82, No. 8, 949–973 (2003; Zbl 1109.35088)]. In all these case viscosity is bounded from below. The authors improve these results as outlined above.

MSC:
35Q30 Navier-Stokes equations
35B35 Stability in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bresch D., C. R. Math. Acad. Sci. Paris 335 pp 1079– (2002) · Zbl 1032.76012
[2] Bresch D., Comm. Math. Phys. 238 pp 211– (2003) · Zbl 1037.76012
[3] Bresch D., C. R. Math. Acad. Sci. Paris, Section Mécanique 332 pp 881– (2004)
[4] DOI: 10.1081/PDE-120020499 · Zbl 1106.76436
[5] Dubinski[ibreve] J. A., Mat. Sb. (N.S.) 67 pp 609– (1965)
[6] DOI: 10.1006/jdeq.2001.4137 · Zbl 1012.76079
[7] DOI: 10.1512/iumj.2004.53.2510 · Zbl 1087.35078
[8] DOI: 10.1007/PL00000976 · Zbl 0997.35043
[9] Hoff D., Trans. Amer. Math. Soc. 303 pp 169– (1987)
[10] DOI: 10.1006/jdeq.1995.1111 · Zbl 0836.35120
[11] DOI: 10.1007/BF00390346 · Zbl 0836.76082
[12] DOI: 10.1016/S0021-7824(03)00015-1 · Zbl 1109.35088
[13] Kazhikhov A. V., Prikl. Mat. Meh. 41 pp 282– (1977)
[14] Lions J.-L., Quelques Méthodes De Résolution Des Problèmes Aux Limites Non Linéaires (1969)
[15] Lions P.-L., Mathematical Topics in Fluid Mechanics. Vol. 2 10 (1998)
[16] Landau L. D., Course of Theoretical Physics 6 (1959)
[17] DOI: 10.3792/pjaa.55.337 · Zbl 0447.76053
[18] Serre D., C. R. Acad. Sci. Paris Sér. I Math. 303 pp 639– (1986)
[19] Va[ibreve]gant V. A., Sibirsk. Mat. Zh. 36 pp 1283– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.