zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Coherent pairs of linear functionals on the unit circle. (English) Zbl 1149.42013
Summary: We extend the concept of coherent pairs of measures from the real line to Jordan arcs and curves. We present a characterization of pairs of coherent measures on the unit circle: it is established that if $(\mu _{0},\mu _{1})$ is a coherent pair of measures on the unit circle, then $\mu _{0}$ is a semi-classical measure. Moreover, we obtain that the linear functional associated with $\mu _{1}$ is a specific rational transformation of the linear functional corresponding to $\mu _{0}$. Some examples are given.

42C05General theory of orthogonal functions and polynomials
Full Text: DOI
[1] Alfaro, M.; Moral, L.: Quasi-orthogonality on the unit circle and semi-classical forms, Portugal math. 51, No. 1, 47-62 (1994) · Zbl 0812.42013
[2] Branquinho, A.; Golinskii, L.; Marcellán, F.: Rational modifications of Lebesgue measure on the unit circle and an inverse problem, Complex variables theory appl. 38, No. 2, 137-154 (1999) · Zbl 1022.42015
[3] A. Branquinho, M.N. Rebocho, Characterizations of Laguerre -- Hahn affine orthogonal polynomials on the unit circle, J. Comput. Anal. Appl., to appear. · Zbl 1135.33302
[4] De Bruin, M.; Meijer, H. G.: Zeros of orthogonal polynomials in a non-discrete Sobolev space, Ann. numer. Math. 27, 233-246 (1995) · Zbl 0833.33009
[5] Chihara, T. S.: An introduction to orthogonal polynomials, (1978) · Zbl 0389.33008
[6] Iserles, A.; Koch, P. E.; Norsett, S. P.; Sanz-Serna, J. M.: On polynomials orthogonal with respect to certain Sobolev inner products, J. approx. Theory 65, 151-175 (1991) · Zbl 0734.42016 · doi:10.1016/0021-9045(91)90100-O
[7] Marcellán, F.; Maroni, P.: Orthogonal polynomials on the unit circle and their derivatives, Constr. approx. 7, 341-348 (1991) · Zbl 0734.42015 · doi:10.1007/BF01888162
[8] Meijer, H. G.: Determination of all coherent pairs, J. approx. Theory 89, 321-343 (1997) · Zbl 0880.42012 · doi:10.1006/jath.1996.3062
[9] Simon, B.: Orthogonal polynomials on the unit circle, American mathematical society colloquium publication, part 1, Orthogonal polynomials on the unit circle, American mathematical society colloquium publication, part 1 54 (2005) · Zbl 1082.42020