zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the inverse of a general pentadiagonal matrix. (English) Zbl 1149.65019
Summary: Employing the general Doolittle factorization, an efficient algorithm is developed to find the inverse of a general pentadiagonal matrix which is suitable for implementation using computer algebra systems software such as Matlab and Maple. Examples are given to illustrate the efficiency of the algorithm.

65F05Direct methods for linear systems and matrix inversion (numerical linear algebra)
65F50Sparse matrices (numerical linear algebra)
68W30Symbolic computation and algebraic computation
Maple; Matlab
Full Text: DOI
[1] Groetsch, C. W.; King, J. T.: Matrix methods and applications. (1988)
[2] Shiau, J. J. H.: A new algorithm for 5-band Toeplitz matrix inversion with application to GCV smoothing spline computation. Stat. probabil. Lett. 45, 317-324 (1999) · Zbl 0954.65022
[3] Diele, F.; Lopez, L.: The use of the factorization of five-diagonal matrices by tridiagonal Toeplitz matrices. Appl. math. Lett. 11, 61-69 (1998) · Zbl 0932.65032
[4] El-Mikkawy, M. E. A.: On the inverse of a general tridiagonal matrix. Appl. math. Comput. 150, 669-679 (2004) · Zbl 1039.65024
[5] El-Mikkawy, M. E. A.: A new computational algorithm for solving periodic tridiagonal linear systems. Appl. math. Comput. 161, 691-696 (2005) · Zbl 1061.65024
[6] Karawia, A. A.: Two algorithms for solving comrade linear systems. Appl. math. Comput. 189, 291-297 (2007) · Zbl 1122.65316
[7] Sogabe, T.: A fast numerical algorithm for the determinant of a pentadiagonal matrix. Appl. math. Comput. 196, 835-841 (2008) · Zbl 1137.65026
[8] Sogabe, T.: On a two-term recurrence for the determinant of a general matrix. Appl. math. Comput. 187, 785-788 (2007) · Zbl 1123.65302
[9] Quarteroni, A.; Sacco, R.; Saleri, F.: Numerical mathematics. (2000) · Zbl 0957.65001