zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A simple Eulerian finite volume method for compressible fluids in domains with moving boundaries. (English) Zbl 1149.76032
Summary: We introduce a simple new Eulerian method for treatment of moving boundaries in compressible fluid computations. Our approach is based on the extension of interface tracking method recently introduced in the context of multifluids. The fluid domain is placed in a rectangular computational domain of a fixed size, which is divided into Cartesian cells. At every discrete time level, there are three types of cells: internal, boundary, and external ones. The numerical solution is evolved in internal cells only. The numerical fluxes at the cells near the boundary are computed using the technique from [{\it A. Chertock, S. Karni} and {\it A. Kurganov}, M2AN Math. Model. Numer. Anal., to appear] combined with a solid wall ghost-cell extrapolation and an interpolation in phase space. The proposed computational framework is general and may be used in conjunction with favorite finite volume method. The robustness of the new approach is illustrated on a number of one- and two-dimensional numerical examples.

76M12Finite volume methods (fluid mechanics)
76N15Gas dynamics, general
Full Text: DOI Euclid