zbMATH — the first resource for mathematics

Small mass implies uniqueness of Gibbs states of a quantum crystal. (English) Zbl 1149.82307
Summary: A model of interacting quantum particles performing one-dimensional anharmonic oscillations around their equilibrium positions which form a lattice \(\mathbb Z^d\) is considered. For this model, it is proved that the set of tempered Euclidean Gibbs measures is a singleton provided the particle mass is less than a certain bound \(m_*\), which is independent of the temperature \(\beta^{-1}\). This settles a problem that was open for a long time and is an essential improvement of a similar result, where the bound \(m_*\) depended on \(\beta\) in such a way that \(m_{\ast}(\beta)\rightarrow 0\) as \(\beta\rightarrow +\infty\).

82B10 Quantum equilibrium statistical mechanics (general)
Full Text: DOI
[1] Aksenov, V.L., Plakida, N.M., Stamenković, S.: Neutron Scattering by Ferroelectrics. Singapore: World Scientific, 1990
[2] Albeverio, S., Høegh–Krohn, R.: Homogeneous Random Fields and Quantum Statistical Mechanics. J. Funct. Anal. 19, 242–272 (1975) · Zbl 0381.60049 · doi:10.1016/0022-1236(75)90058-0
[3] Albeverio, S., Kondratiev, Yu., Kozitsky, Yu.: Suppression of critical fluctuations by strong quantum effects in quantum lattice systems. Commun. Math. Phys. 194, 493–512 (1998) · Zbl 0930.60088 · doi:10.1007/s002200050366
[4] Albeverio, S., Kondratiev, Yu., Kozitsky, Yu.: Classical limits of Euclidean Gibbs states of quantum lattice models. Lett. Math. Phys. 48, 221–233 (1999) · Zbl 0934.60097 · doi:10.1023/A:1007565932634
[5] Albeverio, S., Kondratiev, Yu., Kozitsky, Yu., Röckner, M.: Uniqueness for Gibbs measures of quantum lattices in small mass regime. Ann. Inst. H. Poincaré, Probab. Statist. 37, 43–69 (2001) · Zbl 0980.60009 · doi:10.1016/S0246-0203(00)01057-8
[6] Albeverio, S., Kondratiev, Yu., Kozitsky, Yu., Röckner, M.: Euclidean Gibbs states of quantum lattice systems. Rev. Math. Phys. 14, 1335–1401 (2002) · Zbl 1029.82006 · doi:10.1142/S0129055X02001545
[7] Albeverio, S., Kondratiev, Yu., Kozitsky, Yu., Röckner, M.: Gibbs states of a quantum crystal: uniqueness by small particle mass. C.R. Acad. Sci. Paris, Ser. I 335, 693–698 (2002) · Zbl 1011.82004 · doi:10.1016/S1631-073X(02)02545-1
[8] Albeverio, S., Kondratiev, Yu., Kozitsky, Yu., Röckner, M.: Quantum stabilization in anharmonic crystals. Phys. Rev. Lett. 90, 170603-1-4 (2003) · doi:10.1103/PhysRevLett.90.170603
[9] Albeverio, S., Kondratiev, Yu., Pasurek, T., Röckner, M.: Gibbs states on loop latices: existence and a priori estimates. C. R. Acad. Sci. Paris 333, Série I, 1005–1009 (2001) · Zbl 0995.60099
[10] Albeverio, S., Kondratiev, Yu., Pasurek, T., Röckner, M.: Euclidean Gibbs states of quantum crystals. Moscow Math. J. 1, 1–7 (2001) · Zbl 0993.82006
[11] Albeverio, S., Kondratiev, Yu., Pasurek, T., Röckner, M.: Euclidean Gibbs measures on loop spaces: existence and a priori estimates. BiBiS Preprint Nr. 02-05-086, 2002. To appear in Ann. Probab. · Zbl 1121.82005
[12] Albeverio, S., Kondratiev, Yu., Röckner, M., Tsikalenko, T.: Uniqueness of Gibbs states for quantum lattice systems. Probab. Theory. Relat. Fields 108, 193–218 (1997) · Zbl 0883.60094 · doi:10.1007/s004400050107
[13] Albeverio, S., Kondratiev, Yu., Röckner, M., Tsikalenko, T.: Dobrushin’s uniqueness for quantum lattice systems with nonlocal interaction. Commun. Math. Phys. 189, 621–630 (1997) · Zbl 0888.60094 · doi:10.1007/s002200050220
[14] Albeverio, S., Kondratiev, Yu., Röckner, M., Tsikalenko, T.: Glauber dynamics for quantum lattice systems, Rev. Math. Phys. 13, 51–124 (2001) · Zbl 1081.82018
[15] Barbulyak, V.S., Kondratiev, Yu., G.: The quasiclassical limit for the Schrödinger operator and phase transitions in quantum statistical physics. Func. Anal. Appl. 26(2), 61–64 (1992) · Zbl 0834.47063
[16] Bellissard, J., Høegh-Krohn, R.: Compactness and the maximal Gibbs state for random Gibbs fields on a lattice. Commun. Math. Phys. 84, 297–327 (1982) · Zbl 0495.60057 · doi:10.1007/BF01208480
[17] Blinc, R., Žekš, B.: Soft Modes in Ferroelectrics and Antiferroelectrics. Amsterdam-Oxford-New York: North-Holland Publishing Company/American Elsevier, 1974
[18] Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I, II. New York: Springer-Verlag, 1979, 1981 · Zbl 0421.46048
[19] Bruce, A.D., Cowley, R.A.: Structural Phase Transitions. London: Taylor and Francis Ltd., 1981
[20] Driessler, W., Landau, L., Perez, J.F.: Estimates of critical lengths and critical temperatures for classical and quantum lattice systems. J. Stat. Phys. 20, 123–162 (1979) · doi:10.1007/BF01011509
[21] Freericks, J.K., Jarrell, M., Mahan, G.D.: The anharmonic electron-phonon problem. Phys. Rev. Lett. 77, 4588–4591 (1996) · doi:10.1103/PhysRevLett.77.4588
[22] Georgii, H.O.: Gibbs Measures and Phase Transitions, Berlin: Walter de Gruyter, Springer, 1988 · Zbl 0657.60122
[23] Inoue, A.: Tomita-Takesaki Theory in Algebras of Unbounded Operators. Lecture Notes in Math. 1699, Berlin-Heidelberg-New York: Springer-Verlag, 1998 · Zbl 0930.47042
[24] Kondratiev, Ju. G.: Phase Transitions in Quantum Models of Ferroelectrics, In: Stochastic Processes, Physics, and Geometry II, Singapore, New Jersey: World Scientific, 1994, pp. 465–475 · Zbl 0960.82536
[25] Kozitsky, Yu.: Quantum effects in a lattice model of anharmonic vector oscillators. Lett. Math. Phys. 51, 71–81 (2000) · Zbl 1072.82512 · doi:10.1023/A:1007675606191
[26] Lebowitz, J.L., Presutti, E.: Statistical mechanics of systems of unbounded spins. Commun. Math. Phys. 50, 195–218 (1976) · doi:10.1007/BF01609401
[27] Minlos, R.A., Verbeure, A., Zagrebnov, V.A.: A quantum crystal model in the light-mass limit: Gibbs states. Rev. Math. Phys. 12, 981–1032 (2000) · Zbl 0976.82010
[28] Park, Y.M., Yoo, H.H.: Characterization of Gibbs states of lattice boson systems. J. Stat. Phys. 75, 215–239 (1994) · Zbl 0828.60091 · doi:10.1007/BF02186287
[29] Parthasarathy, K.R.: Probability Measures on Metric Spaces. New York-London: Academic Press, 1967 · Zbl 0153.19101
[30] Pastur, L.A., Khoruzhenko, B.A.: Phase transitions in quantum models of rotators and ferroelectrics. Theor. Math. Phys 73, 111–124 (1987) · doi:10.1007/BF01022968
[31] Plakida, N.M., Tonchev, M.S.: Quantum effects in a d-dimensional exactly solvable model for a structural phase transition. Phys. A 136, 176–188 (1986) · doi:10.1016/0378-4371(86)90049-X
[32] Ruelle, D.: Probability estimates for continuous spin systems. Commun. Math. Phys. 50, 189–194 (1976) · doi:10.1007/BF01609400
[33] Schneider, T., Beck, H., Stoll, E.: Quantum effects in an n-component vector model for structural phase transitions, Phys. Rev. B13, 1123–1130 (1976)
[34] Stamenković, S.: Unified model description of order-disorder and displacive structural phase transitions. Condensed Matter Physics (Lviv) 1(14), 257–309 (1998) · doi:10.5488/CMP.1.2.257
[35] Stasyuk, I.V.: Local anharmonic effects in high-T c superconductors. Pseudospin-electron model. Condensed Matter Physics (Lviv) 2(19), 435–446 (1999) · doi:10.5488/CMP.2.3.435
[36] Stasyuk, I.V.: Approximate analitical dynamical mean-field approach to strongly correlated electron systems. Condensed Matter Physics (Lviv) 3(22), 437–456 (2000) · doi:10.5488/CMP.3.2.437
[37] Tibballs, J.E., Nelmes, R.J., McIntyre, G.J.: The crystal structure of tetragonal KH2 PO4 and KD2 PO4 as a function of temperature and pressure. J. Phys. C: Solid State Phys. 15, 37–58 (1982) · doi:10.1088/0022-3719/15/1/004
[38] Vaks, V.G.: Introduction to the Macroscopic Theory of Ferroelectrics. Moscow: Nauka, 1973 (in Russian)
[39] Verbeure, A., Zagrebnov, V.A.: Phase transitions and algebra of fluctuation operators in exactly soluble model of a quantum anharmonic crystal. J. Stat. Phys. 69, 37–55 (1992) · Zbl 0888.46054 · doi:10.1007/BF01053796
[40] Verbeure, A., Zagrebnov, V.A.: No–go theorem for quantum structural phase transition. J. Phys. A: Math. Gen. 28, 5415–5421 (1995) · Zbl 0871.46043 · doi:10.1088/0305-4470/28/18/029
[41] Walter, W.: Differential and Integral Inequalities. Berlin-Heidelberg-New York: Springer-Verlag, 1970 · Zbl 0252.35005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.