zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exhausters, optimality conditions and related problems. (English) Zbl 1149.90141
This paper uses the notions of upper and lower exhausters, introduced by the first author [Optimization 45, No. 1--4, 13--29 (1999; Zbl 0954.90050)], to obtain optimality conditions and to characterize Lipschitz as well as quasidifferentiable functions within the class of positively homogeneous functions. Expressions for the Michel-Penot and the Fréchet subdifferentials in terms of exhausters are also provided.

90C30Nonlinear programming
90C46Optimality conditions, duality
49J52Nonsmooth analysis (other weak concepts of optimality)
Full Text: DOI
[1] Castellani M. (2000). A dual characterization for proper positively homogeneous functions. J. Glob. Optim. 16: 393--400 · Zbl 1028.90080 · doi:10.1023/A:1008394516838
[2] Clarke F.H. (1983). Optimization and Nonsmooth Analysis. Wiley Interscience, New York · Zbl 0582.49001
[3] Demyanov V.F. (2000). Exhausters and convexificators--new tools in nonsmooth analysis. In: Demyanov, V., Rubinov, A. (eds) Quasidifferentiability and Related Topics, pp 85--137. Kluwer, Dordrecht · Zbl 1138.49301
[4] Demyanov, V.F., Malozemov, V.N.: Introduction to Minimax, p. 368. Nauka, Moscow 1972 (English translation by J. Wiley, 1974, 2nd edn, 1990)
[5] Demyanov, V.F., Roshchina, V.A.: Optimality conditions in terms of upper and lower exhausters. Forthcoming in Optimization · Zbl 1156.90458
[6] Demyanov, V.F., Rubinov, A.M.: Elements of quasidifferential calculus (In Russian). In: Demyanov, V.F. (ed.) Nonsmooth Problems of Optimization Theory and Control, Ch. 1, pp. 5--127. Leningrad University Press (1982)
[7] Demyanov, V.F., Rubinov, A.M.: Constructive Nonsmooth Analysis. Verlag Peter Lang, Frankfurt, a/M. (1995) · Zbl 0887.49014
[8] Demyanov V.F. (1999). Exhausters of a positively homogeneous function. Optimization 45: 13--29 · Zbl 0954.90050 · doi:10.1080/02331939908844424
[9] Demyanov V.F. (1999). Conditional derivatives and exhausters in nonsmooth analysis. Dokl. Russ. Acad. Sci. 338(6): 730--733 · Zbl 1073.49507
[10] Demyanov V.F., Roshchina V.A. (2005). Constrained optimality conditions in terms of upper and lower exhausters. Appl. Comput. Math. 4(2): 25--35 · Zbl 1209.90349
[11] Demyanov V.F., Rubinov A.M. (2001). Exhaustive families of approximations revisited. In: Gilbert, R.P., Panagiotopoulos, P.D., Pardalos, P.M. (eds) From Convexity to Nonconvexity. Nonconvex Optimization and Its Applications, vol. 55, pp 43--50. Kluwer, Dordrecht · Zbl 1043.49021
[12] Glover B.M., Ishizuka Y., Jeyakumar V., Tuan H.D. (1996). Complete characterizations of global optimality for problems involving the pointwise minimum of sublinear functions. SIAM J.Optim. 6(2): 362--372 · Zbl 0847.90122 · doi:10.1137/0806021
[13] Ioffe A.D. (1993). A Lagrange multiplier rule with small convex-valued subdifferentials for nonsmooth problems of mathematical programming involving equality and nonfunctional constraints. Math. Program. 58: 137--145 · Zbl 0782.90095 · doi:10.1007/BF01581262
[14] Kruger A.Y. (2003). On Fréchet subdifferentials Optimization and related topics, 3. J. Math. Sci. (N. Y.) 116(3): 3325--3358 · Zbl 1039.49021 · doi:10.1023/A:1023673105317
[15] Michel P., Penot J.-P. (1984). Calcus sous-differential pour les fonctions lipschitzienness et non-lipschitziennes. C.R. Acad. Sci. Paris, Ser. I 298: 269--272 · Zbl 0567.49008
[16] Mordukhovich B.S. (2004). Necessary conditions in nonsmooth minimization via lower and upper subgradients. Set-Valued Anal. 12(1--2): 163--193 · Zbl 1046.49011 · doi:10.1023/B:SVAN.0000023398.73288.82
[17] Mordukhovich, B.S.: Variational analysis and generalized differentiation I. Basic theory. Grundlehren der Mathematischen Wissenschaften, vol. 330. Springer, Berlin (2006)
[18] Pallaschke D., Scholtes S., Urbanski R. (1991). On minimal pairs of compact convex sets. Bull. Acad. Polon. Sci. Ser. Math. 39: 1--5 · Zbl 0759.52003
[19] Pallaschke D., Urbanski R. (2002). Pairs of Compact Convex Sets. Kluwer, Dordrecht
[20] Polyakova, L.N.: Necessary conditions for an extremum of quasidifferentiable functions. (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. (13), 57--62 (1980) · Zbl 0452.90062
[21] Pschenichnyi, B.N.: Convex Analysis and Extremal Problems (In Russian). Nauka Publishers, Moscow (1980)
[22] Rockafellar R.T. (1976). Convex Analysis. Princeton University Press, Princeton, NJ · Zbl 0333.90008
[23] Roschina, V.A.: Bounded exhausters and optimality conditions (in Russian). In: Control Processes and Stability. Proceedings of XXXVI Scientific Conference of students and Ph.D. students of Applied Mathematics Dept. of St.-Petersburg State University, 10--14 April 2005, St.-Petersburg University Press, St.-Petersburg (2005)
[24] Roshchina, V.A.: Reducing exhausters. J. Optimiz. Theory. App. 135(3) (2007) · Zbl 1151.90049
[25] Uderzo, A.: Convex approximators, convexificators and exhausters: applications to constrained extremumproblems. In:Demyanov,V.,Rubinov, A. (eds.) Quasidifferentiability andRelated Topics, pp. 279--327. Kluwer, Dordrecht (2000) · Zbl 1016.90054