[1] |
Bernstein, D. S.; Michel, A. N.: A chronological bibliography on saturating actuators. International journal of robust and nonlinear control 5, 375-380 (1995) · Zbl 0841.93002 |

[2] |
Chitour, Y.: On the lp stabilization of the double integrator subject to input saturation. Esaim cocv 6, 291-331 (2001) · Zbl 0996.93082 |

[3] |
Chitour, Y.; Liu, W.; Sontag, E.: On the continuity and incrental-gain properties of certain saturated linear feedback loops. International journal of robust and nonlinear control 5, 413-440 (1995) · Zbl 0831.93059 |

[4] |
Dai, L.: Singular control system. (1989) · Zbl 0669.93034 |

[5] |
De Santis, R.; Isidori, A.: On the output regulation for linear systems in the presence of input saturation. IEEE transactions on automatic control 46, 156-160 (2001) · Zbl 1056.93541 |

[6] |
Fang, H.; Lin, Z.; Shamash, Y.: Disturbance tolerance and rejection for linear systems with imprecise knowledge of the actuator input output characteristics. Automatica 42, No. 9, 1523-1530 (2006) · Zbl 1128.93385 |

[7] |
Fang, H.; Lin, Z.; Hu, T.: Analysis and control design of linear systems in the presence of actuator saturation and L2-disturbances. Automatica 40, No. 7, 1229-1238 (2004) · Zbl 1051.93068 |

[8] |
He, M.; Chen, B. M.; Lin, Z.: Structural decomposition and its properties of general multivariable linear singular systems. Journal of systems science and complexity 20, No. 2, 198-214 (2007) · Zbl 1124.93015 |

[9] |
H. Hindi, S. Boyd, Analysis of linear systems with saturation using convex optimization, in: Proc. 37th IEEE Conf. Dec. and Contr. 1998, pp. 903--908 |

[10] |
Hu, T.; Lin, Z.: Output regulation of linear systems with bounded continuous feedback. IEEE transactions on automatic control 49, 1941-1953 (2004) |

[11] |
Hu, T.; Lin, Z.: Control systems with actuator saturation: analysis and design. (2001) · Zbl 1061.93003 |

[12] |
Hu, T.; Lin, Z.; Chen, B. M.: An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica 38, No. 2, 351-359 (2002) · Zbl 0991.93044 |

[13] |
Ishihara, J. Y.; Terra, M. H.: On the Lyapunov theorem for singular systems. IEEE transactions on automatic control 47, No. 11, 1926-1930 (2002) |

[14] |
Lan, W.; Huang, J.: Si-global stabilization and output regulation of singular linear systems with input saturation. IEEE transactions on automatic control 48, No. 7, 1274-1280 (2003) |

[15] |
Lewis, F. L.: A survey of linear singular systems. Circuits, systems, and signal processing 5, 3-36 (1986) · Zbl 0613.93029 |

[16] |
Lin, Z.: Low gain feedback. (1998) · Zbl 0927.93001 |

[17] |
Lin, Z.; Saberi, A.: Si-global exponential stabilization of linear systems subject to ’input saturation’ via linear feedbacks. Systems & control letters 21, 225-239 (1993) · Zbl 0788.93075 |

[18] |
Liu, W.; Chitour, Y.; Sontag, E.: On finite gain stabilizability of linear systems subject to input saturation. SIAM journal on control and optimization 34, 1190-1219 (1996) · Zbl 0855.93077 |

[19] |
Lin, Z.; Lv, L.: Set invariance conditions for singular linear systems subject to actuator saturation. IEEE transactions on automatic control 52, No. 12, 2351-2355 (2007) |

[20] |
Masubuchi, I.; Kamitane, Y.; Ohara, A.; Suda, N.: H$\infty $control for descriptor systems: A matrix inequalities approach. Automatica 33, No. 4, 669-673 (1997) · Zbl 0881.93024 |

[21] |
Mazenc, F.; Mondie, S.; Niculescu, S.: Global asymptotic stabilization for chains of integrators with a delay in the input. IEEE transactions on automatic control 48, No. 1, 57-63 (2003) |

[22] |
Mazenc, F.; Mondie, S.; Niculescu, S.: Global asymptotic stabilization of oscillators with bounded delayed input. Systems & control letters 53, 415-422 (2004) · Zbl 1157.93490 |

[23] |
Nguyen, T.; Jabbari, F.: Disturbance attenuation for systems with input saturation: an LMI approach. Institute of electrical and electronics engineers. Transactions on automatic control 44, No. 4, 852-857 (1999) · Zbl 1073.93560 |

[24] |
T. Nguyen, F. Jabbari, Output feedback controllers for disturbance attenuation with bounded inputs, in: Proc. 36th IEEE Conf. Dec. Contr., 1997, pp. 177--182 |

[25] |
C. Paim, S. Tarbouriech, J.M. Gomes da Silva Jr., E.B. Castelan, Control design for linear systems with saturating actuators and L2-bounded disturbances, in: Proc. 41st IEEE Conf. Dec. and Contr., 2002, pp. 4148--4153 |

[26] |
C. Pittet, S. Tarbouriech, C. Burgat, Stability regions for linear systems with saturaing controls via circle and Popov criteria, in: Proceedings of the 36th IEEE Conference on Decision and Control, 1997, pp. 4518--4523 |

[27] |
Suarez, R.; Alvarez-Ramirez, J.; Sznaier, M.; Ibarra-Valdez, C.: L2-disturbance attenuation for linear systems with bounded controls: an ARE-based approach. Lecture notes in control and information sciences 227, 25-38 (1997) |

[28] |
Sussmann, H. J.; Sontag, E. D.; Yang, Y.: A general result on the stabilization of linear systems using bounded controls. IEEE transactions on automatic control 39, 2411-2425 (1994) · Zbl 0811.93046 |

[29] |
Tarbouriech, S.; Garcia, G.: Control of uncertain systems with bounded inputs. (1997) · Zbl 0868.00028 |

[30] |
Teel, A. R.: Global stabilization and restricted tracking for multiple integrators with bounded controls. Systems & control letters 18, 165-171 (1992) · Zbl 0752.93053 |

[31] |
N. Wada, T. Oomoto, M. Saeki, l2-gain analysis of discrete-time systems with saturation nonlinearity using parameter dependent Lyapunov function, in: Proc. of the 43st IEEE Conf. on Dec. Contr., 2004, pp. 1952--1957 |

[32] |
N. Wada, T. Oomoto, M. Saeki, l\infty performance analysis of feedback systems with saturation nonlinearities: An approach based on polytopic representation, in: Proc. of the 2005 American Control Conference, pp. 3403--3408 |