zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fault tolerant control using sliding modes with on-line control allocation. (English) Zbl 1149.93313
Summary: This paper proposes an on-line sliding mode control allocation scheme for fault tolerant control. The effectiveness level of the actuators is used by the control allocation scheme to redistribute the control signals to the remaining actuators when a fault or failure occurs. The paper provides an analysis of the sliding mode control allocation scheme and determines the nonlinear gain required to maintain sliding. The on-line sliding mode control allocation scheme shows that faults and even certain total actuator failures can be handled directly without reconfiguring the controller. The simulation results show good performance when tested on different fault and failure scenarios.

MSC:
93B51Design techniques in systems theory
93C15Control systems governed by ODE
WorldCat.org
Full Text: DOI
References:
[1] Alwi, H., & Edwards, C. (2006). Fault tolerant control using sliding mode with on-line control allocation, In Proc. conf. decision contr · Zbl 1149.93313
[2] Bordignon, K. A.; Durham, W. C.: Closed-form solutions to constrained control allocation problem, Journal on guidance, control, dynamics 18, 1000-1007 (1995)
[3] Boskovic, J. D., & Mehra, R. K. (2002). Control allocation in overactuated aircraft under position and rate limiting. In Proc. Amer. contr. conf. (pp. 791-796)
[4] Brière, D., & Traverse, P. (1993). Airbus A320/A330/A340 electrical flight controls: A family of fault-tolerant systems. In Digest of papers FTCS-23. The 23rd international symposium on fault-tolerant computing (pp. 616-623)
[5] Buffington, J.; Chandler, P.; Pachter, M.: On-line system identification for aircraft with distributed control effectors, International journal on robust nonlinear control 9, 1033-1049 (1999)
[6] Buffington, J. M.; Enns, D. F.: Lyapunov stability analysis of daisy chain control allocation, Journal on guidance, control, dynamics 19, 1226-1230 (1996) · Zbl 0869.93034 · doi:10.2514/3.21776
[7] Corradini, M.L., Orlando, G., & Parlangeli, G. (2005). A fault tolerant sliding mode contoller for accommodating actuator failures. In Proc. conf. decision contr
[8] Davidson, J., Lallman, F., & Bundick, W. (2001). Real-time adaptive control allocation applied to a high performance aircraft. In 5th SIAM conf. on contr. & its application
[9] Edwards, C.; Spurgeon, S. K.: Sliding mode control: theory and applications, (1998) · Zbl 0964.93019
[10] Edwards, C.; Spurgeon, S. K.; Patton, R. J.: Sliding mode observers for fault detection, Automatica 36, 541-553 (2000) · Zbl 0968.93502 · doi:10.1016/S0005-1098(99)00177-6
[11] Enns, D. (1998). Control allocation approaches. In Proc. AIAA guidance, navigation, contr. conf. (pp. 98-108)
[12] Forssell, L., & Nilsson, U. (2005). ADMIRE, the aero-data model in a research environment version 4.0, model description. Technical report. Swedish Defence Agency (FOI)
[13] Härkegård, O.; Glad, S. T.: Resolving actuator redundancy -- optimal control vs. Control allocation, Automatica 41, 137-144 (2005) · Zbl 1155.93353 · doi:10.1016/j.automatica.2004.09.007
[14] Horn, R. A.; Johnson, C. R.: Matrix analysis, (1990) · Zbl 0704.15002
[15] Khalil, H. K.: Nonlinear systems, (1992) · Zbl 0969.34001
[16] Shin, D.; Moon, G.; Kim, Y.: Design of reconfigurable flight control system using adaptive sliding mode control: actuator fault, Proceedings of the imeche, part G: journal on aerospace engineering 219, 321-328 (2005)
[17] Shtessel, Y.; Buffington, J.; Banda, S.: Tailless aircraft flight control using multiple time scale re-configurable sliding modes, IEEE transactions on control systems and technology 10, 288-296 (2002)
[18] Stewart, G. W.: On scaled projections and pseudoinverses, Linear algebra and its applications 112, 189-193 (1989) · Zbl 0658.15003 · doi:10.1016/0024-3795(89)90594-6
[19] Tan, C. P.; Edwards, C.: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults, International journal on robust nonlinear control 13, 443-463 (2003) · Zbl 1036.93025 · doi:10.1002/rnc.723
[20] Utkin, V. I.: Sliding modes in control optimization, (1992) · Zbl 0748.93044
[21] Wells, S. R.; Hess, R. A.: Multi-input/multi-output sliding mode control for a tailless fighter aircraft, Journal on guidance, control, dynamics 26, 463-473 (2003)
[22] Zhang, Y. M.; Jiang, J.: Active fault-tolerant control system against partial actuator failures, IEE Proceedings on control theory & applications 149, 95-104 (2002)