zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. (English) Zbl 1149.93322
Summary: Adaptive dynamic surface control is developed for a class of pure-feedback nonlinear systems with unknown dead zone and perturbed uncertainties using neural networks. The explosion of complexity in traditional backstepping design is avoided by utilizing dynamic surface control and introducing integral-type Lyapunov function. It is proved that the proposed design method is able to guarantee semi-global uniform ultimate boundedness of all signals in the closed-loop system, with arbitrary small tracking error by appropriately choosing design constants. Simulation results demonstrate the effectiveness of the proposed approach.

MSC:
93C40Adaptive control systems
93C10Nonlinear control systems
WorldCat.org
Full Text: DOI
References:
[1] Funahashi, K.: On the approximate realization of continuous mappings by neural networks, Neural networks 2, No. 3, 183-192 (1989)
[2] Ge, S. S.; Hang, C. C.; Lee, T. H.; Zhang, T.: Stable adaptive neural network control, (2001) · Zbl 1001.93002
[3] Ge, S. S.; Wang, C.: Adaptive NN control of uncertain nonlinear pure-feedback systems, Automatica 38, No. 4, 671-682 (2002) · Zbl 0998.93025 · doi:10.1016/S0005-1098(01)00254-0
[4] Ge, S. S.; Wang, C.: Direct adaptive NN control of a class of nonlinear systems, IEEE transactions on neural networks 13, No. 1, 214-221 (2002)
[5] Kanellakipoulos, I.; Kokotović, P. V.; Morse, A. S.: Systematic design of adaptive controllers for feedback linearizable systems, Systematic design of adaptive controllers for feedback linearizable systems 36, No. 11, 1241-1253 (1991) · Zbl 0768.93044 · doi:10.1109/9.100933
[6] Krstić, M.; Kanellakopoulos, I.; Kokotović, P. V.: Adaptive nonlinear control without overparametrization, Systems and control letters 19, No. 3, 177-185 (1992) · Zbl 0763.93043 · doi:10.1016/0167-6911(92)90111-5
[7] Krstić, M.; Kanellakopoulos, I.; Kokotović, P. V.: Nonlinear and adaptive control design, (1995) · Zbl 0763.93043
[8] Lewis, F. L.; Campos, J.; Selmic, R.: Neuro-fuzzy control of industrial systems with actuator nonlinearities, (2002) · Zbl 1010.93001
[9] Polycarpou, M. M.: Stable adaptive neural control scheme for nonlinear systems, IEEE transactions on automatic control 41, No. 3, 447-451 (1996) · Zbl 0846.93060 · doi:10.1109/9.486648
[10] Polycarpou, M. M.; Mears, M. J.: Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators, International journal of control 70, No. 3, 363-384 (1998) · Zbl 0945.93563 · doi:10.1080/002071798222280
[11] Selmic, R. R.; Lewis, F. L.: Deadzone compensation in motion control control systems using neural networks, IEEE transactions on automatic control 45, No. 4, 602-613 (2000) · Zbl 0989.93068 · doi:10.1109/9.847098
[12] Swaroop, D.; Hedrick, J. K.; Yip, P. P.; Gerdes, J. C.: Dynamic surface control for a class of nonlinear systems, IEEE transactions on automatic control 45, No. 10, 1893-1899 (2000) · Zbl 0991.93041 · doi:10.1109/TAC.2000.880994
[13] Tao, G.; Kokotovic, P. V.: Adaptive sliding control of plants with unknown dead-zone, IEEE transactions on automatic control 39, No. 1, 59-68 (1994) · Zbl 0796.93070 · doi:10.1109/9.273339
[14] Tao, G.; Kokotovic, P. V.: Discrete-time adaptive control of systems with unknown dead-zone, International journal of control 61, No. 1, 1-17 (1995) · Zbl 0821.93045 · doi:10.1080/00207179508921889
[15] Tao, G.; Lewis, F. L.: Adaptive control of nonsmooth dynamic systems, (2001) · Zbl 0982.93007
[16] Wang, L. X.: Adaptive fuzzy systems and control: design and stability analysis, (1994)
[17] Wang, C.; Hill, D. J.; Ge, S. S.; Chen, G.: An ISS-modular approach for adaptive neural control of pure-feedback systems, Automatica 42, No. 5, 723-731 (2006) · Zbl 1137.93367 · doi:10.1016/j.automatica.2006.01.004
[18] Wang, D.; Huang, J.: Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form, Automatica 38, No. 8, 1365-1372 (2002) · Zbl 0998.93026 · doi:10.1016/S0005-1098(02)00034-1
[19] Wang, D.; Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form, IEEE transactions on neural networks 16, No. 1, 195-202 (2005)
[20] Wang, X. S.; Hong, H.; Su, C. Y.: Robust adaptive control a class of nonlinear systems with an unknown dead-zone, Automatica 40, No. 3, 407-413 (2004) · Zbl 1036.93036 · doi:10.1016/j.automatica.2003.10.021
[21] Yesildirek, A.; Lewis, F. L.: Feedback linearization using neural networks, Automatica 31, No. 11, 1659-1664 (1995) · Zbl 0847.93032 · doi:10.1016/0005-1098(95)00078-B
[22] Zhang, T.; Ge, S. S.; Hang, C. C.: Adaptive neural network control for strict-feedback nonlinear systems using backstepping design, Automatica 36, No. 12, 1835-1846 (2000) · Zbl 0976.93046
[23] Zhang, T. P.; Ge, S. S.: Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs, Automatica 43, No. 6, 1021-1033 (2007) · Zbl 1282.93152
[24] Zhou, J.; Wen, C.; Zhang, Y.: Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity, IEEE transactions on automatic control 51, No. 3, 504-511 (2006)