zbMATH — the first resource for mathematics

On intervals and the dual of a pseudo MV-algebra. (English) Zbl 1150.06013
Pseudo MV-algebras are a non-commutative generalization of MV-algebras. A. Dvurečenskij proved that every pseudo MV-algebra \(\mathcal A\) is isomorphic to an interval \([o,u]\) of an \(\ell \)-group \(G\) with a strong unit \(u\). In this paper, Dvurečenskij’s result is used in order to define the pseudo MV-algebra dual of \(\mathcal A\), \(\mathcal A^{\text{dual}}\). In the framework of this dual construction, the systems of intervals, as well as the interval direct product decompositions of pseudo MV-algebras are investigated.

06D35 MV-algebras
Full Text: EuDML
[1] CATTANEO G.-LOMBARDO F.: Independent axiomatization of MV-algebras. Tatra Mt. Math. Publ. 15 (1998), 227-232. · Zbl 0939.03076
[2] CHANG C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490. · Zbl 0084.00704
[3] CIGNOLI R.-D’OTTAVIANO M. I.-MUNDICI D.: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. · Zbl 0937.06009
[4] DVUREČENSKIJ A.: Pseudo MV-algebras are intervals in l-groups. J. Aust. Math. Soc. 72 (2002), 427-445. · Zbl 1027.06014
[5] GEORGESCU G.-IORGULESCU A.: Pseudo MV-algebras: a noncommutative extension of MV-algebras. The Proceedings of the Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, 1999, pp. 961-968. · Zbl 0985.06007
[6] GEORGESCU G.-IORGULESCU A.: Pseudo MV-algebras. Mult.-Valued Log. (Special issue dedicated to Gr. C Moisil) 6 (2001), 95-135. · Zbl 1014.06008
[7] JAKUBÍK J.: Direct product decompositions of MV-algebras. Czechoslovak Math. J. 44 (1994), 725-739. · Zbl 0821.06011
[8] JAKUBÍK J.: Direct product decompositions of pseudo MV-algebras. Arch. Math. (Brno) 37 (2001), 131-142. · Zbl 1070.06003
[9] JAKUBÍK J.: On intervals and isometries of MV-algebras. Czechoslovak Math. J. 52 (2002), 651-663. · Zbl 1012.06013
[10] MUNDICI D.: Interpretation of AFC* -algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63. · Zbl 0597.46059
[11] RACHŮNEK J.: A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255-273. · Zbl 1012.06012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.