×

zbMATH — the first resource for mathematics

A short derivation of the Möbius function for the Bruhat order. (English) Zbl 1150.20028
Summary: We give a short, self-contained derivation of the Möbius function for the Bruhat orderings of Coxeter groups and their parabolic quotients.

MSC:
20F55 Reflection and Coxeter groups (group-theoretic aspects)
05E15 Combinatorial aspects of groups and algebras (MSC2010)
06A07 Combinatorics of partially ordered sets
11B75 Other combinatorial number theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Springer, New York, 2005. · Zbl 1110.05001
[2] Björner, A.; Wachs, M., Bruhat order of Coxeter groups and shellability, Adv. in Math., 43, 87-100, (1982) · Zbl 0481.06002
[3] N. Bourbaki, Groupes et Algèbres de Lie, Chp. IV-VI, Masson, Paris, 1981.
[4] F. Brenti, S. Fomin, and A. Postnikov, “Mixed Bruhat operators and Yang-Baxter equations for Weyl groups,” Internat. Math. Res. Notices1999 419-441. · Zbl 0978.22008
[5] Deodhar, V. V., Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math., 39, 187-198, (1977) · Zbl 0346.20032
[6] Dyer, M. J., Hecke algebras and shellings of Bruhat intervals,, Compositio Math., 89, 91-115, (1993) · Zbl 0817.20045
[7] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, Cambridge, 1990.
[8] A. Lascoux, “Anneau de Grothendieck de la variét´e de drapeaux,” in “The Grothendieck Festschrift, vol. III”, pp. 1-34, Progr. Math.88, Birkhäuser, Boston, 1990. · Zbl 0742.14041
[9] Kazhdan, D.; Lusztig, G., Representations of Coxeter groups and Hecke algebras,, Invent. Math., 53, 165-184, (1979) · Zbl 0499.20035
[10] Verma, D.-N., Möbius inversion for the Bruhat ordering on a Weyl group,, Ann. Sci. École Norm. Sup., 4, 393-398, (1971) · Zbl 0236.20035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.