zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of a solution for a boundary value problem of a nonlinear fractional differential equation. (English) Zbl 1150.34005
Summary: This paper is concerned with a boundary value problem of a nonlinear fractional differential equation. By means of Schauder’s fixed-point theorem, an existence result for a solution is obtained.

34B15Nonlinear boundary value problems for ODE
47N20Applications of operator theory to differential and integral equations
Full Text: DOI
[1] Bai Z B, Lü H S. Positive solutions for boundary value problem of nonlinear fractional differential equation, J Math Anal Appl, 2005, 311: 495--505. · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[2] Zhang S Q. Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electronic Journal of Differential Equations, 2006, 36: 1--12. · Zbl 1096.34016
[3] Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives(Theory and Applications), Yverdon, Switzerland: Gordon and Breach, 1993. · Zbl 0818.26003
[4] Podlubny I. Fractional Differential Equations, Mathematics in Science and Engineering, New York/Londin/Toronto: Academic Press, 1999, vol, 198. · Zbl 0924.34008
[5] Delbosco D, Rodino L. Existence and uniqueness for a nonlinear fractional differential equation, J Math Anal Appl, 1996, 204: 609--625. · Zbl 0881.34005 · doi:10.1006/jmaa.1996.0456
[6] Gejji V D, Jafari H. Adomian decomposition: a tool for solving a system of fractional differential equations, J Math Anal Appl, 2005, 301: 508--518. · Zbl 1061.34003 · doi:10.1016/j.jmaa.2004.07.039
[7] Schmitt K. A nonlinear boundary value problem, Journal of Differential Equations, 1970, 7:527--537. · Zbl 0198.12301 · doi:10.1016/0022-0396(70)90099-9