×

Over-iterates of Bernstein-Stancu operators. (English) Zbl 1150.41013

In this paper the authors obtain convergence results for over-iterates of generalized Bernstein–Stancu operators. They use the spectrum of the operators involved. Therefore it is possible to make global statements on \([0,1]\). This is different from a previous result by I. A. Rus [Studia Univ. Babes-Bolyai. Math. 47(4), 101–104 (2002)].

MSC:

41A36 Approximation by positive operators
47A75 Eigenvalue problems for linear operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] 1. Călugăreanu, G.: On operators of S.N. Bernstein. Spectra of operators. (Romanian) Gaz. Mat. Ser. A 71, 448–451 (1966)
[2] 2. Cooper, S., Waldron, S.: The eigenstructure of the Bernstein operator. J. Approx. Theory 105, 133–165 (2000) · Zbl 0963.41006
[3] 3. Gonska, H.: Quantitative Aussagen zur Approximation durch positive lineare Operatoren. Dissertation. Gesamthochschule Duisburg (1979) · Zbl 0548.41014
[4] 4. Gonska, H.H., Meier, J.: Quantitative theorems on approximation by Bernstein-Stancu operators. Calcolo 21, 317–335 (1984) · Zbl 0568.41021
[5] 5. Gonska, H., Kacsó, D., Piţul, P.: The degree of convergence of over-iterated positive linear operators. J. Appl. Funct. Anal. 1, 403–423 (2006) · Zbl 1099.41011
[6] 6. Kelisky, R.P., Rivlin, T.J.: Iterates of Bernstein polynomials. Pacific J. Math. 21, 511–520 (1967) · Zbl 0177.31302
[7] 7. Kemeny, J.G., Snell, J.L.: Finite Markov chains. New York: Springer 1976 · Zbl 0328.60035
[8] 8. Lupaş, A.: Die Folge der Betaoperatoren. Dissertation. Uni. Stuttgart 1972
[9] 9. Ostrovska, S.: q-Bernstein polynomials and their iterates. J. Approx. Theory 123, 232–255 (2003) · Zbl 1093.41013
[10] 10. Raşa, I., Vladislav, T.: Some properties of Bernstein and Stancu operators. In: Stancu, D.D. et al. (eds.): Approximation and optimization. Vol. 1. Transilvania Press: Cluj-Napoca 1997, pp. 345–350 · Zbl 0884.41016
[11] 11. Rus, I.A.: Iterates of Stancu operators, via contraction principle. Studia Univ. Babeş-Bolyai. Math. 47 (4), 101–104 (2002) · Zbl 1249.41020
[12] 12. Rus, I.A.: Iterates of Bernstein operators, via contraction principle. J. Math. Anal. Appl. 292, 259–261 (2004) · Zbl 1056.41004
[13] 13. Stancu, D.D.: Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl. 13, 1173–1194 (1968) · Zbl 0167.05001
[14] 14. Stancu, D.D.: Approximation of functions by means of some new classes of positive linear operators. In: Collatz, L., Meinardus, G. (eds.): Numerische Methoden der Approximationstheorie. Band 1. Basel: Birkhäuser 1972 pp. 187–203 · Zbl 0255.41016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.