×

Magnetoelectroelastic analysis for an opening crack in a piezoelectromagnetic solid. (English) Zbl 1150.74044

Summary: Magnetoelectroelastic analysis of a cracked piezoelectromagnetic solid is made within the framework of the theory of linear magnetoelectroelasticity. The associated mixed boundary-value problem is solved by the Fourier integral transform. For general electromagnetic crack-face boundary conditions, a full magnetoelectroelastic field in the entire plane induced by a crack is obtained explicitly, and field intensity factors and energy release rate are given. The influences of applied electric and magnetic loadings on the energy release rate, the strain intensity factor, and the stress distribution are presented graphically.

MSC:

74F15 Electromagnetic effects in solid mechanics
74R10 Brittle fracture
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fabrikant, V. I., Computation of infinite integrals involving three Bessel functions by introduction of new formalism, ZAMM, 83, 363-373 (2003) · Zbl 1022.65023
[2] Fan, T. Y., Foundation of Fracture Mechanics (1978), Jiangsu Sci-Tech Press: Jiangsu Sci-Tech Press Nanjing, (in Chinese)
[3] Gao, C.-F.; Kessler, H.; Balke, H., Crack problems in magnetoelectroelastic solids, Int. J. Engrg. Sci., 41, 969-981 (2003) · Zbl 1211.74187
[4] Gao, C.-F.; Kessler, H.; Balke, H., Crack problems in magnetoelectroelastic solids. Part II: general solutions of collinear cracks, Int. J. Engrg. Sci., 41, 983-994 (2003) · Zbl 1211.74188
[5] Gao, C.-F.; Tong, P.; Zhang, T.-Y., Fracture mechanics for a mode III crack in a magnetoelectroelastic solid, Int. J. Solids Struct., 41, 6613-6629 (2004) · Zbl 1179.74117
[6] Hao, T. H.; Shen, Z. Y., A new electric boundary condition of electric fracture mechanics and its applications, Eng. Fract. Mech., 47, 793-802 (1994)
[7] Li, X.-F., Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts, Int. J. Solids Struct., 42, 3185-3205 (2005) · Zbl 1142.74014
[8] Li, X.-F.; Lee, K. Y., Fracture analysis of cracked piezoelectric materials, Int. J. Solids Struct., 41, 4137-4161 (2004) · Zbl 1079.74613
[9] Li, X.-F.; Lee, K. Y., Crack growth in a piezoelectric material with a Griffith crack perpendicular to the poling axis, Philos. Mag., 84, 1789-1820 (2004)
[10] Li, X.-F.; Yang, J. S., Electromagnetoelastic behavior induced by a crack under antiplane mechanical and inplane electric impacts, Int. J. Fract., 132, 49-64 (2005) · Zbl 1196.74201
[11] Liu, J.-X.; Liu, X.-L.; Zhao, Y.-B., Green’s functions for anisotropic magnetoelectro-elastic solids with an elliptical cavity or a crack, Int. J. Engrg. Sci., 39, 1405-1418 (2001) · Zbl 1210.74073
[12] McMeeking, R. M., Towards a fracture mechanics for brittle piezoelectric and dielectric materials, Int. J. Fract., 108, 25-41 (2001)
[13] McMeeking, R. M., The energy release rate for a Griffith crack in a piezoelectric material, Engrg. Fract. Mech., 71, 1149-1163 (2004)
[14] Pak, Y. E., Linear electroelastic fracture mechanics of piezoelectric materials, Int. J. Fract., 54, 79-100 (1992)
[15] Park, S.; Sun, C. T., Fracture criterion for piezoelectric ceramics, J. Am. Ceram. Soc., 78, 1475-1480 (1995)
[16] Rajapakse, R. K.N. D., Plane strain/stress solutions for piezoelectric solids, Compsites Part B, 28B, 385-396 (1997)
[17] Romeo, M., Dispersive surface waves in anisotropic linear magnetoelectroelasticity, Int. J. Engrg. Sci., 44, 14-25 (2006) · Zbl 1213.74170
[18] Sih, G. C.; Chen, E. P., Dilatational and distortional behavior of cracks in magnetoelectroelastic materials, Theor. Appl. Frac. Mech., 40, 1-21 (2003)
[19] Sih, G. C.; Jones, R.; Song, Z. F., Dilatational and distortional behavior of cracks in magnetoelectroelastic materials, Theor. Appl. Frac. Mech., 40, 161-186 (2003)
[20] Sih, G. C.; Song, Z. F., Magnetic and electric poling effects associated with crack growth in \(BaTiO_3-CoFe_2 O_4\) composite, Theor. Appl. Fract. Mech., 39, 209-227 (2003)
[21] Tian, W. Y.; Gabbert, U., Multiple crack interaction problem in magnetoelectroelastic solids, Eur. J. Mech. A Solids, 23, 599-614 (2004) · Zbl 1062.74044
[22] Tian, W. Y.; Rajapakse, R. K.N. D., Fracture analysis of magnetoelectroelastic solids using path independent integrals, Int. J. Frac., 131, 311-335 (2005) · Zbl 1196.74217
[23] Wang, B.-L.; Mai, Y.-W., Fracture of piezoelectromagnetic materials, Mech. Res. Commun., 31, 65-73 (2004) · Zbl 1045.74586
[24] Wang, X. D.; Jiang, L. Y., Fracture behaviour of cracks in piezoelectric media with electromechanically coupled boundary conditions, Proc. Roy. Soc. Lond. Ser. A, 458, 2545-2560 (2002) · Zbl 1039.74043
[25] Wang, X.; Shen, Y. P., The general solution of three-dimensional problems in magnetoelectroelastic media, Int. J. Engrg. Sci., 40, 1069-1080 (2002) · Zbl 1211.74103
[26] Wang, H.; Singh, R. N., Crack propagation in piezoelectric ceramics: effects of applied electric fields, J. Appl. Phys., 81, 7471-7479 (1997)
[27] Zhang, Z. K.; Soh, A. K., Micromechanics predictions of the effective moduli of magnetoelectroelastic composite materials, Eur. J. Mech. A Solids, 24, 1054-1067 (2005) · Zbl 1098.74662
[28] Zhong, X.-C, Li, X.-F., 2006a. Closed-form solution for an eccentric anti-plane shear crack normal to the edges of a magnetoelectroelastic strip. Acta Mech., in press, doi: 10.1007/s00707-006-0366-z; Zhong, X.-C, Li, X.-F., 2006a. Closed-form solution for an eccentric anti-plane shear crack normal to the edges of a magnetoelectroelastic strip. Acta Mech., in press, doi: 10.1007/s00707-006-0366-z · Zbl 1106.74054
[29] Zhong, X.-C, Li, X.-F., 2006b. A finite length crack propagating along the interface of two dissimilar magnetoelectroelastic materials. Int. J. Engrg. Sci., in press, doi: 10.1016/j.ijengsci.2006.07.004; Zhong, X.-C, Li, X.-F., 2006b. A finite length crack propagating along the interface of two dissimilar magnetoelectroelastic materials. Int. J. Engrg. Sci., in press, doi: 10.1016/j.ijengsci.2006.07.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.