# zbMATH — the first resource for mathematics

$$H$$-invariant distribution vectors of induced representations for a $$p$$-adic reductive symmetric space $$G/H$$. (Vecteurs distributions $$H$$ invariants de représentations induites, pour un espace symétrique réductif $$p$$-adique $$G/H$$.) (French. English summary) Zbl 1151.22012
Let $$F$$ be a nonarchimedean local field of characteristic zero, and let $$G$$ be the group of $$F$$-points of a reductive algebraic linear group $$\mathbf G$$ defined over $$F$$. Let $$\sigma$$ be an involution of $$\mathbf G$$, which is defined over $$F$$, and let $$H$$ denote the group of $$F$$-points of an open subgroup, defined over $$F$$, of the group of fixed points by $$\sigma$$. The article starts the study of harmonic analysis on the reductive symmetric space $$G/H$$, in analogy with those on real symmetric spaces. The first step, achieved in the paper, is the construction of families of $$H$$-invariant linear forms on generalized principal series. The main tool is smooth homology. For a given smooth module $$V$$, let $$V_G=J_G(V)$$ be the space of $$G$$-coinvariants (that is the quotient of $$V$$ by the subspace spanned by the vectors $$gv-v$$, $$v\in V$$, $$g\in G$$). Then the functor $$J_G$$ is right exact, and $$H_*(G,V)$$ – the smooth homology of $$V$$ – is defined to be the homology of the complex $\cdots\to J_G(P_1)\to J_G(P_0)\to 0$ obtained by applying $$J_G$$ to a projective resolution $\cdots\to P_2\to P_1\to P_0\to V\to 0$ of $$V$$. $$H_*(G,V)$$ does not depend on the choice of the projective resolution of $$V$$. Moreover, $$H_0(G,V)$$ is canonically isomorphic to $$J_G(V)$$.

##### MSC:
 2.2e+36 Analysis on $$p$$-adic Lie groups
Full Text:
##### References:
 [1] Bernstein, I. N.; Zelevinsky, A. V., Induced representations of reductive $$\mathfrak{p}$$-adic groups. I, Annales Scientifiques de l’École Normale Supérieure, 441-472, (1977) · Zbl 0412.22015 [2] Blanc, P., Projectifs dans la catégorie des G-modules topologiques, C.R.Acad.Sc.Paris, 161-163, (1979) · Zbl 0442.18007 [3] Blanc, P.; Brylinski, J-L, Cyclic homology and the Selberg principle, J. Funct. Anal., 289-330, (1992) · Zbl 0783.55004 [4] Borel, A.; Tits, J., Groupes réductifs, Publications Mathématiques de l’IHES, 55-151, (1965) · Zbl 0145.17402 [5] Borel, A.; Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups, 67, (2000), American Mathematical Society, Providence, RI · Zbl 0980.22015 [6] Brylinski, J. L.; Delorme, P., Vecteurs distributions $$H$$-invariants pour LES séries principales généralisées d’espaces symétriques réductifs et prolongement méromorphe d’intégrales d’eisenstein, Invent. Math., 619-664, (1992) · Zbl 0785.22014 [7] Carmona, J.; Delorme, P., Base méromorphe de vecteurs distributions $$H$$-invariants pour LES séries principales généralisées d’espaces symétriques réductifs : équation fonctionnelle, J. Funct. Anal., 152-221, (1994) · Zbl 0831.22004 [8] Cartan, H.; Eilenberg, S., Homological algebra, (1956), Princeton Univ. Press · Zbl 0075.24305 [9] Casselman, W., A new nonunitarity argument for $$p$$-adic representations, J. Fac. Sci. Univ. Tokyo, 907-928, (1982) · Zbl 0519.22011 [10] Delorme, P., Harmonic analysis on real reductive symmetric spaces, Proceedings of the International Congress of Mathematicians, II, 545-554, (2002) · Zbl 1018.43009 [11] Guichardet, A., Cohomologie des groupes topologiques et des algèbres de Lie, (1980), CEDIC, Paris · Zbl 0464.22001 [12] Helminck, A. G.; Helminck, G. F., A class of parabolic $$k$$-subgroups associated with symmetric $$k$$-varieties, Trans. Amer. Math. Soc., 4669-4691, (1998) · Zbl 0912.20041 [13] Helminck, A. G.; Wang, S. P., On rationality properties of involutions of reductive groups, Adv. Math., 26-96, (1993) · Zbl 0788.22022 [14] Hironaka, Y., Spherical functions and local densities on Hermitian forms, J. Math Soc. Japan, 553-581, (1999) · Zbl 0936.11024 [15] Hironaka, Y.; Sato, F., Spherical functions and local densities of alternating forms, Am. J. Math., 473-512, (1988) · Zbl 0662.22013 [16] Humphreys, J. E., Linear algebraic groups, (1975), Springer-Verlag, New York-Heidelberg · Zbl 0325.20039 [17] Humphreys, J. E., Introduction to Lie algebras and representation theory, (1978), Springer-Verlag, New York-Berlin · Zbl 0447.17001 [18] Michael, E., Selected selection theorems, Amer. Math. Monthly, 223-238, (1956) · Zbl 0070.39502 [19] Offen, O., Relative spherical functions on $$℘$$-adic symmetric spaces (three cases), Pacific J. Math., 1, 97-149, (2004) · Zbl 1059.22019 [20] Offen, O.; Sayag, E., On unitary distinguished representations of $$GL_{2n}$$ distinguished by the symplectic group · Zbl 1147.11028 [21] Olafsson, G., Fourier and Poisson transformation associated to a semisimple symmetric space, Invent. Math., 605-629, (1987) · Zbl 0665.43004 [22] Richardson, R. W., Orbits, invariants and representations associated to involutions of reductive groups, Invent. Math., 287-312, (1982) · Zbl 0508.20021 [23] Waldspurger, J.-L., La formule de Plancherel pour LES groupes $$p$$-adiques (d’après harish-chandra), J. Inst. Math. Jussieu, 235-333, (2003) · Zbl 1029.22016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.