×

zbMATH — the first resource for mathematics

Boundary value problems for multi-term fractional differential equations. (English) Zbl 1151.26004
In this interesting paper, the authors study the solution of a class of boundary value problems for the linear multi-term time-fractional diffusion-wave equation. The fractional derivative used in the paper is the so-called Caputo derivative. Also, some examples are presented.

MSC:
26A33 Fractional derivatives and integrals
34A60 Ordinary differential inclusions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Schneider, W.R.; Wyss, W., Fractional diffusion and wave equations, J. math. phys., 30, 1, 134-144, (1989) · Zbl 0692.45004
[2] Nigmatullin, R.R., The realization of the generalized transfer in a medium with fractal geometry, Phys. status solidi B, 133, 425-430, (1986)
[3] Fujita, Y., Integrodifferential equations which interpolate the heat and the wave equation, Osaka J. math., 27, 309-321, (1990) · Zbl 0790.45009
[4] Fujita, Y., Integrodifferential equations which interpolate the heat and the wave equation II, Osaka J. math., 27, 797-804, (1990) · Zbl 0796.45010
[5] Mainardi, F., Fractional diffusive waves in viscoelastic solids, (), 93-97
[6] Metzler, R.; Klafter, J., Boundary value problems for fractional diffusion equations, Phys. A, 278, 107-125, (2000)
[7] Scher, H.; Montroll, E., Anomalous transit-time dispersion in amorphous solids, Phys. rev. B, 12, 2455, (1975)
[8] Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, (), 291-348 · Zbl 0917.73004
[9] Gorenflo, R.; Mainardi, F., Fractional calculus and stable probability distributions, Arch. mech., 50, 377-388, (1998) · Zbl 0934.35008
[10] Hanyga, A., Multidimensional solutions of time-fractional diffusion-wave equations, Proc. R. soc. lond. ser. A, 458, 933-957, (2002) · Zbl 1153.35347
[11] Agrawal, O.P., Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear dynam., 29, 145-155, (2002) · Zbl 1009.65085
[12] Metzler, R.; Barkai, E.; Klafter, J., Anomalous diffusion and relaxation close to thermal equilibrium: A fractional fokker – plank equation approach, Phys. rev. lett., 82, 3563-3567, (1999)
[13] Daftardar-Gejji, V.; Jafari, H., Boundary value problems for fractional diffusion-wave equations, Aust. J. math. anal. appl., 3, 1-8, (2006) · Zbl 1093.35041
[14] Sokolov, I.M.; Metzler, R., Non-uniqueness of the first passage time density of levĂ˝ random process, J. phys. A, 37, L609-L615, (2004) · Zbl 1071.60033
[15] Jafari, H.; Daftardar-Gejji, V., Solving linear and non-linear fractional diffusion and wave equations by adomain decomposition, Appl. math. comput., 180, 488-497, (2004) · Zbl 1102.65135
[16] Al-Khaled, K.; Momani, S., An approximate solution for a fractional diffusion-wave equation using the decomposition method, Appl. math. comput., 165, 473-483, (2005) · Zbl 1071.65135
[17] Luchko, Yu.; Gorenflo, R., An operational method for solving fractional differential equations with the Caputo derivatives, Acta math. Vietnam., 24, 207-233, (1999) · Zbl 0931.44003
[18] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J., Theory and applications of fractional differential equations, (2006), Elsevier Amsterdam · Zbl 1092.45003
[19] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[20] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach Yverdon · Zbl 0818.26003
[21] Brown, J.W.; Churchill, R.V., Fourier series and boundary value problems, (1993), McGraw-Hill
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.