Henderson, Johnny; Hopkins, Britney; Kim, Eugenie; Lyons, Jeffrey Boundary data smoothness for solutions of nonlocal boundary value problems for \(n\)-th order differential equations. (English) Zbl 1151.34016 Involve 1, No. 2, 167-181 (2008). Summary: Under certain conditions, solutions of the boundary value problem, \[ y(n)=f(x,y,y^{\prime},\dots,y^{(n-1)}), \]\[ y^{(i-1)}(x_1)=y_i \quad\text{ for }1\leq i\leq n-1,\text{ and }y(x_2)-\sum_{i=1}^m r_iy(\eta_i)=y_n, \]are differentiated with respect to boundary conditions, where \(a<x_1<\eta_1<\cdots<\eta_m<x_2<b\), and \(r_1,\dots,r_m,y_ 1,\dots,y_n\in\mathbb R\). Cited in 4 Documents MSC: 34B15 Nonlinear boundary value problems for ordinary differential equations 34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations 34B08 Parameter dependent boundary value problems for ordinary differential equations Keywords:nonlinear boundary value problem; ordinary differential equation; nonlocal boundary condition; boundary data smoothness PDF BibTeX XML Cite \textit{J. Henderson} et al., Involve 1, No. 2, 167--181 (2008; Zbl 1151.34016) Full Text: DOI OpenURL