zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solitary wave solutions for the modified Kadomtsev-Petviashvili equation. (English) Zbl 1151.35423
Summary: By applying the theory of bifurcations of dynamical systems to the modified Kadomtsev-Petviashvili equation which describes soliton propagation in multi-temperature electrons plasmas, a number of solitary waves and kink waves are obtained. Under various parameter conditions, all explicit formulas of solitary waves and kink solutions are given.

35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
37K50Bifurcation problems (infinite-dimensional systems)
82D10Plasmas (statistical mechanics)
Full Text: DOI
[1] Blowitz, M. J.; Clarkson, P. A.: Nonlinear evolution and inverse scattering. (1991)
[2] Wadati, M.; Sanuki, H.; Konno, K.: Prog theor phys. 3, 19 (1975)
[3] Matveev, V. A.; Salle, M. A.: Darboux transformation and solitons. (1991) · Zbl 0744.35045
[4] Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of soliton. Phys rev lett 7, 192 (1971) · Zbl 1168.35423
[5] Liu, Shikuo; Fu, Zuntao; Liu, Shida; Zhao, Qiang: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys lett A 289, 69-74 (2001) · Zbl 0977.35094
[6] Li, Z. B.; Liu, Y. P.: Comput phys commun. 148, 56 (2002)
[7] Fan, Engui: Extended tanh-function method and its applications to nonlinear equations. Phys lett A 277, 212-218 (2000) · Zbl 1167.35331
[8] Das, G. C.; Sarma, J.: Evolution of solitary wave in multicomponent plasmas. Chaos, solitons & fractals 9, 901-911 (1998) · Zbl 0948.76092
[9] Chen, Yongze; Liu, Philip L. -F.: A generalized modified Kadomtsev -- Petviashvili equation for interfacial wave propagation near the critical depth level. Wave motion 27, 321-339 (1998) · Zbl 1074.86502
[10] Lin, Mai-Mai; Duan, Wen-Shan: The Kadomtsev -- Petviashvili (KP), MKP, and coupled KP equations for two-ion temperature dusty plasmas. Chaos, solitons & fractals 23, 929-937 (2005) · Zbl 1069.35073
[11] Guckenheimer, J.; Holmes, P. J.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. (1985) · Zbl 0515.34001
[12] Perko, L.: Differential equations and dynamical systems. (1991) · Zbl 0717.34001
[13] Li, J. B.; Liu, Z. R.: Smooth and non-smooth travelling waves in a nonlinearly dispersive equation. Appl math model 25, 41-56 (2000) · Zbl 0985.37072