zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New third order nonlinear solvers for multiple roots. (English) Zbl 1151.65041
Summary: Two third order methods for finding multiple zeros of nonlinear functions are developed. One method is based on Chebyshev’s third order scheme (for simple roots) and the other is a family based on a variant of Chebyshev’s which does not require the second derivative. Two other more efficient methods of lower order are also given. These last two methods are variants of Chebyshev’s and {\it N. Osada}’s schemes [J. Comput. Appl. Math. 51, No. 1, 131--133 (1994; Zbl 0814.65045)]. The informational efficiency of the methods is discussed. All these methods require the knowledge of the multiplicity.

MSC:
65H05Single nonlinear equations (numerical methods)
Software:
Maple
WorldCat.org
Full Text: DOI
References:
[1] Ostrowski, A. M.: Solutions of equations and system of equations. (1960) · Zbl 0115.11201
[2] Traub, J. F.: Iterative methods for the solution of equations. (1964) · Zbl 0121.11204
[3] B. Neta, Numerical Methods for the Solution of Equations, Net-A-Sof, California, 1983. · Zbl 0514.65029
[4] Rall, L. B.: Convergence of the Newton process to multiple solutions. Numer. math. 9, 23-37 (1966) · Zbl 0163.38702
[5] Schröder, E.: Über unendlich viele algorithmen zur auflösung der gleichungen. Math. ann. 2, 317-365 (1870)
[6] Hansen, E.; Patrick, M.: A family of root finding methods. Numer. math. 27, 257-269 (1977) · Zbl 0361.65041
[7] Victory, H. D.; Neta, B.: A higher order method for multiple zeros of nonlinear functions. Int. J. Comput. math. 12, 329-335 (1983) · Zbl 0499.65026
[8] Dong, C.: A basic theorem of constructing an iterative formula of the higher order for computing multiple roots of an equation. Math. numer. Sinica 11, 445-450 (1982) · Zbl 0511.65030
[9] Dong, C.: A family of multipoint iterative functions for finding multiple roots of equations. Int. J. Comput. math. 21, 363-367 (1987) · Zbl 0656.65050
[10] B. Neta, A.N. Johnson, High order nonlinear solver for multiple roots, Comput. Math. Appl., doi:10.1016/j.camwa.2007.09.001. · Zbl 1142.65044
[11] B. Neta, Extension of Murakami’s high order nonlinear solver to multiple roots, Int. J. Comput. Math., submitted for publication. · Zbl 1192.65052
[12] Werner, W.: Iterationsverfahren höherer ordnung zur lösung nicht linearer gleichungen. Z. angew. Math. mech. 61, T322-T324 (1981)
[13] Halley, E.: A new, exact and easy method of finding the roots of equations generally and that without any previous reduction. Phil. trans. Roy. soc. Lond. 18, 136-148 (1694)
[14] King, R. F.: A family of fourth order methods for nonlinear equations. SIAM J. Numer. anal. 10, 876-879 (1973) · Zbl 0266.65040
[15] Jarratt, P.: Some fourth order multipoint methods for solving equations. Math. comp. 20, 434-437 (1966) · Zbl 0229.65049
[16] Osada, N.: An optimal multiple root-finding method of order three. J. comput. Appl. math. 51, 131-133 (1994) · Zbl 0814.65045
[17] Jarratt, P.: Multipoint iterative methods for solving certain equations. Comput. J. 8, 398-400 (1966) · Zbl 0141.13404
[18] Murakami, T.: Some fifth order multipoint iterative formulae for solving equations. J. inform. Process. 1, 138-139 (1978) · Zbl 0394.65015
[19] Candela, V. F.; Marquina, A.: Recurrence relations for rational cubic methods II: The Chebyshev method. Computing 45, 355-367 (1990) · Zbl 0714.65061
[20] Hofsommer, D. J.: Note on the computation of the zeros of functions satisfying a second order differential equation. Math. table other aids comp. 12, 58-60 (1958) · Zbl 0083.11901
[21] Popovski, D. B.: A family of one point iteration formulae for finding roots. Int. J. Comput. math. 8, 85-88 (1980) · Zbl 0423.65028
[22] Redfern, D.: The Maple handbook. (1994) · Zbl 0820.68002
[23] Kou, J.; Li, Y.: Modified Chebyshev’s method free from second derivative for nonlinear equations. Appl. math. Comp. 187, 1027-1032 (2007) · Zbl 1116.65055
[24] Neta, B.: On popovski’s method for nonlinear equations. Appl. math. Comp. 201, No. 1 -- 2, 710-715 (2008) · Zbl 1155.65337