×

Similarity stagnation point solutions of the Navier-Stokes equations - review and extension. (English) Zbl 1151.76425

Summary: Stagnation regions exist on all blunt bodies moving in a viscous fluid. In certain stagnation flow problems, the Navier-Stokes equations reduce to nonlinear ordinary differential equations through a similarity transform. This paper reviews the existing steady similarity stagnation flow solutions and discusses a new area of research, stagnation flow with slip.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Wang, C.Y., Exact solutions of the steady-state navier – stokes equations, Annu. rev. fluid mech., 23, 159-177, (1991)
[2] Bluman, G.W.; Cole, J.D., Similarity methods for differential equations, (1974), Springer New York · Zbl 0292.35001
[3] Olver, P.J., Applications of Lie groups to differential equations, (1986), Springer New York · Zbl 0588.22001
[4] Hansen, A.G., Similarity analysis of boundary value problems in engineering, (1964), Prentice-Hall New Jersey · Zbl 0137.22603
[5] Ames, W.F., Nonlinear partial differential equations on engineering, (1965), Academic Press New York · Zbl 0176.39701
[6] Hiemenz, K., Die grenzschicht an einem in den gleichformingen flussigkeitsstrom eingetauchten graden kreiszylinder, Dinglers polytech. J., 326, 321-324, (1911)
[7] Tam, K.K., A note on the existence of a solution of the falkner – skan equation, Can. math. bull., 13, 125-127, (1970) · Zbl 0195.09602
[8] Craven, A.H.; Peletier, L.A., On the uniqueness of solutions of the falkner – skan equation, Mathematika, 19, 129-133, (1972) · Zbl 0259.34023
[9] Jones, C.W.; Watson, E.J., Two-dimensional boundary layers, (), (Chapter 5)
[10] Homann, F., Der einfluss grosser zahigkeit bei der stromung um den zylinder und um die kugel, Z. angew. math. mech., 16, 153-164, (1936) · JFM 62.0984.02
[11] Howarth, L., The boundary layer in three dimensional flow – part II, the flow near a stagnation point, Philos. mag. ser. 7, 42, 1433-1440, (1951) · Zbl 0043.39901
[12] Davey, A., A boundary layer flow at a saddle point of attachment, J. fluid mech., 10, 593-610, (1961) · Zbl 0100.22501
[13] Stuart, J.T., The viscous flow near a stagnation point when the external flow has uniform vorticity, J. aerospace sci., 26, 124-125, (1959) · Zbl 0086.19903
[14] Tamada, K., Two-dimensional stagnation point flow impinging obliquely on a plane wall, J. phys. soc. jpn., 46, 310-311, (1979)
[15] Dorrepaal, J.M., An exact solution of the navier – stokes equation which describes non-orthogonal stagnation point flow in two dimensions, J. fluid mech., 163, 141-147, (1986) · Zbl 0605.76033
[16] Davey, A., Rotational flow near a forward stagnation point, Quart. J. mech. appl. math., 16, 33-59, (1963) · Zbl 0112.18904
[17] Rott, N., Unsteady viscous flow in the vicinity of a stagnation point, Quart. appl. math., 13, 444-451, (1956) · Zbl 0070.19704
[18] Wang, C.Y., Axisymmetric stagnation flow towards a moving plate, Aiche j., 19, 1080-1081, (1973)
[19] Libby, P.A., Wall shear at a three-dimensional stagnation point with a moving wall, Aiaa j., 12, 408-409, (1974)
[20] Alexander, J.I.D., Oblique flow onto a growing crystal interface – an exact solution, J. crystal growth, 89, 251-256, (1988)
[21] Labropulu, F.; Dorrepaal, J.M.; Chandna, O.P., Oblique flow impinging on a wall with suction or blowing, Acta mech., 115, 15-25, (1996) · Zbl 0859.76016
[22] Weidman, P.D.; Mahalingam, S., Axisymmetric stagnation-point flow impinging in a transversely oscillating plate with suction, J. engrg. math., 31, 305-318, (1997) · Zbl 0898.76017
[23] Robinson, W.A., The existence of multiple solutions for the laminar flow in a uniformly porous channel with suction at both walls, J. engrg. math., 10, 23-40, (1976) · Zbl 0325.76035
[24] Skalak, F.M.; Wang, C.Y., On the nonunique solutions of laminar flow through a porous tube or channel, SIAM J. appl. math., 34, 535-544, (1978) · Zbl 0376.76069
[25] King, J.R.; Cox, S.M., Self-similar stagnation point boundary layer flows with suction or injection, Stud. appl. math., 115, 73-107, (2005) · Zbl 1145.76351
[26] Zandbergen, P.J.; Dijkstra, D., Von karman swirling flows, Annu. rev. fluid mech., 19, 465-491, (1987) · Zbl 0629.76026
[27] Rasmussen, H., Steady viscous flow between two porous disks, Z. angew. math. phys., 21, 187-195, (1970)
[28] Terrill, R.M.; Cornish, J.P., Radial flow of a viscous, incompressible fluid between two stationary, uniformly porous discs, J. appl. math. phys., 24, 676-688, (1973) · Zbl 0268.76018
[29] Chapman, T.W.; Bauer, G.L., Stagnation point viscous flow of an incompressible fluid between porous plates with uniform blowing, Appl. sci. res., 31, 223-239, (1975) · Zbl 0327.76008
[30] Elcrat, A.R., Radial flow of a viscous fluid between porous disks, Arch. ration. mech. anal., 61, 91-96, (1976) · Zbl 0347.76022
[31] Wang, C.Y., Fluid dynamics of the circular porous slider, J. appl. mech., 41, 343-347, (1974) · Zbl 0294.76068
[32] Skalak, F.; Wang, C.Y., Fluid dynamics of a long porous slider, J. appl. mech., 42, 893-894, (1975)
[33] Watson, L.T.; Li, T.Y.; Wang, C.Y., Fluid dynamics of the elliptic porous slider, J. appl. mech., 45, 435-436, (1978)
[34] Hinch, E.J.; Lemaitre, J., The effect of viscosity on the height of disks floating above an air table, J. fluid mech., 273, 313-322, (1994) · Zbl 0814.76038
[35] Cox, S.M., Nonaxisymmetric flow between an air table and a floating disk, Phys. fluids, 14, 1540-1543, (2002) · Zbl 1185.76092
[36] Wang, C.Y., Axisymmetric stagnation flow on a cylinder, Quart. appl. math., 32, 207-213, (1974) · Zbl 0283.76019
[37] Gorla, R.S.R., Nonsimilar axisymmetric stagnation flow on a moving cylinder, Int. J. engrg. sci., 16, 397-400, (1978) · Zbl 0383.76019
[38] Cunning, G.M.; Davis, A.M.J.; Weidman, P.D., Radial stagnation flow on a rotating circular cylinder with uniform transpiration, J. engrg. math., 33, 113-128, (1998) · Zbl 0908.76095
[39] Paullet, J.E.; Weidman, P.D., Analytical results for a BVP describing radial stagnation flow with transpiration, J. math. anal. appl., 247, 246-254, (2000) · Zbl 0979.76017
[40] Okamoto, H., Axisymmetric stagnation flow converging obliquely on a cylinder, J. phys. soc. jpn., 64, 2714-2717, (1995)
[41] Weidman, P.D.; Putkaradze, V., Axisymmetric stagnation flow obliquely impinging on a circular cylinder, Eur. J. mech. B/fluids, Eur. J. mech. B/fluids, 24, 788-790, (2003), Erratum
[42] Wang, C.Y., Stagnation flow on the surface of a quiescent fluid – an exact solution of the navier – stokes equations, Quart. appl. math., 43, 215-223, (1985) · Zbl 0586.76040
[43] Liu, T.S., Non-orthogonal stagnation flow on the surface of a quiescent fluid – an exact solution of the navier – stokes equation, Quart. appl. math., 50, 39-47, (1992) · Zbl 0747.76037
[44] Mahapatra, T.R.; Gupta, A.S., Stagnation flow towards a stretching surface, Can. J. chem. engrg., 81, 258-263, (2003)
[45] Wang, C.Y., Impinging stagnation flows, Phys. fluids, 30, 915-917, (1987)
[46] Davis, J.; Yadigaroglu, G., Direct contact condensation in hiemenz flow boundary layers, Int. J. heat mass transfer, 47, 1863-1875, (2004) · Zbl 1045.76579
[47] Tilley, B.S.; Weidman, P.D., Oblique two fluid stagnation point flows, Eur. J. mech. B/fluids, 17, 205-217, (1998) · Zbl 0954.76021
[48] Wang, C.Y., Flow over a surface with parallel grooves, Phys. fluids, 15, 1114-1121, (2003) · Zbl 1186.76558
[49] Sharipov, F.; Seleznev, V., Data on internal rarefied gas flows, J. phys. chem. ref. data, 27, 657-706, (1998)
[50] Karniadakis, G.E.; Beskok, A., Micro flows, (2000), Springer New York
[51] Navier, C.L.M., Sur LES lois du movement des fluides, C. R. acad. sci., 6, 389-440, (1827)
[52] Wang, C.Y., Stagnation flow with slip: exact solutions of the navier – stokes equations, Z. angew. math. phys., 54, 184-189, (2003) · Zbl 1036.76005
[53] Ishimura, N.; Ushijima, T.K., An elementary approach to the analysis of exact solutions for the navier – stokes stagnation flows with slips, Arch. math., 82, 432-441, (2004) · Zbl 1136.76347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.