×

Slender-body approximations for electro-phoresis and electro-rotation of polarizable particles. (English) Zbl 1151.76640

Summary: Slender-body asymptotic theory is used to evaluate the translational and rotational electrophoretic velocities of initially uncharged polarizable bodies of revolution. These velocities are obtained as asymptotic expansions in the small particle slenderness. Conducting particles which lack fore-aft symmetry translate parallel to the applied field direction, regardless of their orientation relative to it. Both conducting and dielectric particles tend to align with the field. The translational and rotational velocities of dielectric particles are asymptotically smaller than those of comparable conducting particles.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1209/0295-5075/82/54004 · doi:10.1209/0295-5075/82/54004
[2] DOI: 10.1017/S0022112007009196 · Zbl 1159.76393 · doi:10.1017/S0022112007009196
[3] DOI: 10.1063/1.1900823 · Zbl 1187.76578 · doi:10.1063/1.1900823
[4] DOI: 10.1017/S0022112006000371 · Zbl 1122.76098 · doi:10.1017/S0022112006000371
[5] DOI: 10.1017/S0022112004009309 · Zbl 1093.76065 · doi:10.1017/S0022112004009309
[6] Happel, Low Reynolds Number Hydrodynamics (1965)
[7] DOI: 10.1017/S0022112094003885 · Zbl 0825.76858 · doi:10.1017/S0022112094003885
[8] DOI: 10.1103/PhysRevLett.100.058302 · doi:10.1103/PhysRevLett.100.058302
[9] DOI: 10.1063/1.2404948 · Zbl 1146.76520 · doi:10.1063/1.2404948
[10] Gamayunov, Colloid J. USSR 48 pp 197– (1986)
[11] DOI: 10.1017/S0022112006001376 · Zbl 1177.76465 · doi:10.1017/S0022112006001376
[12] DOI: 10.1017/S002211207000215X · Zbl 0267.76015 · doi:10.1017/S002211207000215X
[13] DOI: 10.1016/S0009-2509(96)00337-5 · doi:10.1016/S0009-2509(96)00337-5
[14] Cole, Perturbation Methods in Applied Mathematics (1968)
[15] Levich, Physicochemical Hydrodynamics (1962)
[16] DOI: 10.1016/0009-2509(64)85084-3 · doi:10.1016/0009-2509(64)85084-3
[17] DOI: 10.1103/PhysRevLett.92.066101 · doi:10.1103/PhysRevLett.92.066101
[18] Batchelor, An Introduction to Fluid Dynamics (1967) · Zbl 0152.44402
[19] DOI: 10.1146/annurev.fluid.30.1.139 · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[20] DOI: 10.1021/la063224p · doi:10.1021/la063224p
[21] DOI: 10.1063/1.2746847 · Zbl 1182.76859 · doi:10.1063/1.2746847
[22] DOI: 10.1063/1.2185690 · doi:10.1063/1.2185690
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.