×

A novel quasi-exactly solvable spin chain with nearest-neighbors interactions. (English) Zbl 1151.82318

Summary: We study a novel spin chain with nearest-neighbors interactions depending on the sites coordinates, which in some sense is intermediate between the Heisenberg chain and the spin chains of Haldane-Shastry type. We show that when the number of spins is sufficiently large both the density of sites and the strength of the interaction between consecutive spins follow the Gaussian law. We develop an extension of the standard freezing trick argument that enables us to exactly compute a certain number of eigenvalues and their corresponding eigenfunctions. The eigenvalues thus computed are all integers, and in fact our numerical studies evidence that these are the only integer eigenvalues of the chain under consideration. This fact suggests that this chain can be regarded as a finite-dimensional analog of the class of quasi-exactly solvable Schrödinger operators, which has been extensively studied in the last two decades. We have applied the method of moments to study some statistical properties of the chain’s spectrum, showing in particular that the density of eigenvalues follows a Wigner-like law. Finally, we emphasize that, unlike the original freezing trick, the extension thereof developed in this paper can be applied to spin chains whose associated dynamical spin model is only quasi-exactly solvable.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B23 Exactly solvable models; Bethe ansatz
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Minahan, J. A.; Zarembo, K., JHEP, 0303, 013 (2003)
[2] Berenstein, D.; Cherkis, S. A., Nucl. Phys. B, 702, 49 (2004)
[3] Roiban, R.; Volovich, A., JHEP, 0409, 032 (2004)
[4] Beisert, N.; Staudacher, M., Nucl. Phys. B, 727, 1 (2005)
[5] Freyhult, L.; Kristjansen, C.; Månsson, T., JHEP, 0512, 008 (2005)
[6] Gorsky, A. S., Theor. Math. Phys., 142, 153 (2005)
[7] Heisenberg, W., Z. Phys., 49, 619 (1928)
[8] Bethe, H., Z. Phys., 71, 205 (1931)
[9] Hulthén, L., Ark. Mat. Astron. Fys., 26A, 1 (1938)
[10] des Cloizeaux, J.; Pearson, J. J., Phys. Rev., 128, 2131 (1962)
[11] Babujian, H. M., Phys. Lett. A, 90, 479 (1982)
[12] Takhtajan, L. A., Phys. Lett. A, 87, 479 (1982)
[13] Majumdar, C. K.; Ghosh, D. K., J. Math. Phys., 10, 1388 (1969)
[14] Affleck, I.; Kennedy, T.; Lieb, E. H.; Tasaki, H., Phys. Rev. Lett., 59, 799 (1987)
[15] Haldane, F. D.M., Phys. Rev. Lett., 60, 635 (1988)
[16] Shastry, B. S., Phys. Rev. Lett., 60, 639 (1988)
[17] Hubbard, J., Proc. R. Soc. London, Ser. A, 276, 238 (1963)
[18] Gutzwiller, M. C., Phys. Rev. Lett., 10, 159 (1963)
[19] Gebhard, F.; Vollhardt, D., Phys. Rev. Lett., 59, 1472 (1987)
[20] Sutherland, B., Phys. Rev. A, 4, 2019 (1971)
[21] Sutherland, B., Phys. Rev. A, 5, 1372 (1972)
[22] Ha, Z. N.C.; Haldane, F. D.M., Phys. Rev. B, 46, 9359 (1992)
[23] Hikami, K.; Wadati, M., J. Phys. Soc. Jpn., 62, 469 (1993)
[24] Minahan, J. A.; Polychronakos, A. P., Phys. Lett. B, 302, 265 (1993)
[25] Polychronakos, A. P., Phys. Rev. Lett., 70, 2329 (1993)
[26] Calogero, F., J. Math. Phys., 12, 419 (1971)
[27] Calogero, F., Lett. Nuovo Cimento, 20, 251 (1977)
[28] Frahm, H., J. Phys. A: Math. Gen., 26, L473 (1993) · Zbl 0773.17020
[29] Polychronakos, A. P., Nucl. Phys. B, 419, 553 (1994)
[30] Finkel, F.; González-López, A., Phys. Rev. B, 72, 174411 (2005)
[31] Bernard, D.; Gaudin, M.; Haldane, F. D.M.; Pasquier, V., J. Phys. A: Math. Gen., 26, 5219 (1993)
[32] Enciso, A.; Finkel, F.; González-López, A.; Rodríguez, M. A., Nucl. Phys. B, 707, 553 (2005)
[33] Basu-Mallick, B.; Bondyopadhaya, N., Nucl. Phys. B, 757, 280 (2006)
[34] Enciso, A.; Finkel, F.; González-López, A.; Rodríguez, M. A., Phys. Lett. B, 605, 214 (2005)
[35] Enciso, A.; Finkel, F.; González-López, A.; Rodríguez, M. A., J. Phys. A: Math. Theor., 40, 1857 (2007)
[36] Turbiner, A. V., Commun. Math. Phys., 118, 467 (1988)
[37] Shifman, M. A., Int. J. Mod. Phys. A, 4, 2897 (1989)
[38] Ushveridze, A. G., Quasi-Exactly Solvable Models in Quantum Mechanics (1994), Institute of Physics Publishing: Institute of Physics Publishing Bristol · Zbl 0834.58042
[39] Auberson, G.; Jain, S. R.; Khare, A., J. Phys. A: Math. Gen., 34, 695 (2001)
[40] Benoit, C.; Royer, E.; Poussigue, G., J. Phys.: Condens. Matter, 4, 3125 (1992)
[41] Alonso, J. L.; Fernández, L. A.; Guinea, F.; Laliena, V.; Martín-Mayor, V., Phys. Rev. B, 63, 054411 (2001)
[42] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (2000), Academic Press: Academic Press San Diego · Zbl 0981.65001
[43] Blair, J. M.; Edwards, C. A.; Johnson, J. H., Math. Comp., 30, 827 (1976)
[44] Calogero, F.; Perelomov, A. M., Lett. Nuovo Cimento, 23, 650 (1978)
[45] Dominici, D.
[46] Simon, B., Ann. Inst. H. Poincaré, Sect. A (N.S.), 38, 295 (1983)
[47] Holcman, D.; Kupka, I., Forum Math., 18, 445 (2006)
[48] Khare, A.; Loris, I.; Sasaki, R., J. Phys. A: Math. Gen., 37, 1665 (2004)
[49] Finkel, F.; Gómez-Ullate, D.; González-López, A.; Rodríguez, M. A.; Zhdanov, R., Commun. Math. Phys., 221, 477 (2001)
[50] Finkel, F.; Gómez-Ullate, D.; González-López, A.; Rodríguez, M. A.; Zhdanov, R., Nucl. Phys. B, 613, 472 (2001)
[51] Chihara, T. S., An Introduction to Orthogonal Polynomials (1978), Gordon and Breach: Gordon and Breach New York · Zbl 0389.33008
[52] Turchi, P.; Ducastelle, F.; Tréglia, G., J. Phys. C: Solid State Phys., 15, 2891 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.