×

zbMATH — the first resource for mathematics

Order of current variance and diffusivity in the rate one totally asymmetric zero range process. (English) Zbl 1151.82381
Summary: We prove that the variance of the current across a characteristic is of order \(t^{2/3}\) in a stationary constant rate totally asymmetric zero range process, and that the diffusivity has order \(t^{1/3}\). This is a step towards proving universality of this scaling behavior in the class of one-dimensional interacting systems with one conserved quantity and concave hydrodynamic flux. The proof proceeds via couplings to show the corresponding moment bounds for a second class particle. We build on the methods developed by M. Balázs and T. Seppäläinen [Order of current variance and diffusivity in the asymmetric simple exclusion process, preprint, arXiv:math/0608400] for simple exclusion. However, some modifications were needed to handle the larger state space. Our results translate into \(t^{2/3}\)-order of variance of the tagged particle on the characteristics of totally asymmetric simple exclusion.

MSC:
82C22 Interacting particle systems in time-dependent statistical mechanics
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
60J05 Discrete-time Markov processes on general state spaces
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999) · Zbl 0932.05001
[2] Balázs, M.: Growth fluctuations in a class of deposition models. Ann. Inst. Henri Poincaré Probab. Stat. 39, 639–685 (2003) · Zbl 1029.60075
[3] Balázs, M., Seppäläinen, T.: Order of current variance and diffusivity in the asymmetric simple exclusion process. http://arxiv.org/abs/math.PR/0608400 (2006)
[4] Balázs, M., Seppäläinen, T.: Exact connections between current fluctuations and the second class particle in a class of deposition models. J. Stat. Phys. 127(2), 431–455 (2007) · Zbl 1147.82348
[5] Balázs, M., Cator, E., Seppäläinen, T.: Cube root fluctuations for the corner growth model associated to the exclusion process. Electron. J. Probab. 11, 1094–1132 (2006) · Zbl 1139.60046
[6] Cator, E., Groeneboom, P.: Second class particles and cube root asymptotics for Hammersley’s process. Ann. Probab. 34(4) (2006) · Zbl 1101.60076
[7] Ferrari, P.A., Fontes, L.R.G.: Current fluctuations for the asymmetric simple exclusion process. Ann. Probab. 22, 820–832 (1994) · Zbl 0806.60099
[8] Ferrari, P.L., Spohn, H.: Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Commun. Math. Phys. 265(1), 1–44 (2006) · Zbl 1118.82032
[9] Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000) · Zbl 0969.15008
[10] Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999) · Zbl 0927.60002
[11] Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. In: In And Out of Equilibrium (Mambucaba, 2000). Progr. Probab.,vol. 51, pp. 185–204. Birkhäuser, Boston (2002) · Zbl 1015.60093
[12] Quastel, J., Valkó., B.: A note on the diffusivity of finite-range asymmetric exclusion processes on \(\mathbb{Z}\). http://arxiv.org/abs/0705.2416 (2007) · Zbl 1127.60091
[13] Quastel, J., Valko, B.: t 1/3 Superdiffusivity of finite-range asymmetric exclusion processes on \(\mathbb{Z}\). Commun. Math. Phys. 273(2), 379–394 (2007) · Zbl 1127.60091
[14] Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970) · Zbl 0312.60060
[15] van Beijeren, H., Kutner, R., Spohn, H.: Excess noise for driven diffusive systems. Phys. Rev. Lett. 54(18), 2026–2029 (1985). DOI: 10.1103/PhysRevLett.54.2026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.