Kumar, Suresh; Singh, C. P. An exact Bianchi type-I cosmological model in Lyra’s manifold. (English) Zbl 1151.83314 Int. J. Mod. Phys. A 23, No. 6, 813-822 (2008). Summary: A spatially homogeneous and anisotropic Bianchi type-I space-time has been studied within the framework of Lyra’s geometry. Exact solutions of the Einstein’s field equations have been obtained with a time dependent gauge function by using a special law of variation for Hubble’s parameter that yields a constant value of deceleration parameter. It has been found that the solutions generalize the solutions obtained by F. Rahaman et al. [Astrophys. Space Sci. 299, 211 (2005)] and are consistent with the recent observations of type Ia supernovae. A detailed study of physical and kinematical properties of the model has been carried out. Cited in 18 Documents MSC: 83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory 83F05 Relativistic cosmology Keywords:Bianchi-type models; cosmology; deceleration parameter; Lyra’s geometry PDF BibTeX XML Cite \textit{S. Kumar} and \textit{C. P. Singh}, Int. J. Mod. Phys. A 23, No. 6, 813--822 (2008; Zbl 1151.83314) Full Text: DOI References: [1] DOI: 10.1007/s10509-007-9623-4 · Zbl 1162.83311 [2] DOI: 10.1007/BF01175135 · Zbl 0042.15902 [3] DOI: 10.1071/PH700863 [4] DOI: 10.1063/1.1665894 [5] DOI: 10.1007/BF00759100 [6] Hoyle F., Mon. Not. R. Astron. Soc. 108 pp 252– [7] DOI: 10.1098/rspa.1963.0072 · Zbl 0116.44601 [8] DOI: 10.1071/PH740541 [9] DOI: 10.1007/BF00759843 [10] DOI: 10.1007/BF00756799 · Zbl 0494.53027 [11] DOI: 10.1007/BF00649122 · Zbl 0592.76199 [12] DOI: 10.1007/BF00661265 [13] DOI: 10.1007/BF00646445 · Zbl 0734.76098 [14] DOI: 10.1063/1.529495 · Zbl 0736.76084 [15] DOI: 10.1007/BF02813228 [16] DOI: 10.1007/BF00673976 [17] Singh T., Fortschr. Phys. 41 pp 737– [18] Singh J. K., Proc. Math. Soc. B.H.U. 11 pp 83– [19] DOI: 10.1007/BF02845856 [20] DOI: 10.1142/S0218271801000767 [21] Pradhan A., Int. J. Mod. Phys. D 9 pp 1419– [22] Pradhan A., Int. J. Mod. Phys. D 8 pp 1195– [23] DOI: 10.1016/S0393-0440(03)00105-0 · Zbl 1069.83500 [24] DOI: 10.1590/S0103-97332006000700020 [25] DOI: 10.1142/S0218271801000913 · Zbl 1155.83318 [26] DOI: 10.1142/S0218271801001256 · Zbl 1155.83319 [27] DOI: 10.1007/BF02704282 [28] DOI: 10.1007/BF02704519 [29] Rahaman F., II Nuovo Cimento B 118 pp 99– [30] DOI: 10.1007/s10509-005-5943-4 [31] DOI: 10.1007/BF01333146 [32] DOI: 10.1063/1.1665623 · Zbl 0211.24804 [33] DOI: 10.1007/BF02721676 [34] DOI: 10.1007/s10509-006-9210-0 [35] DOI: 10.1007/s10509-006-9282-x [36] DOI: 10.1142/S0218271806007754 · Zbl 1101.83338 [37] DOI: 10.1007/s12043-007-0087-4 [38] DOI: 10.1007/s10509-007-9411-1 [39] DOI: 10.1086/312017 [40] DOI: 10.1142/S0218271801000718 [41] Ellis G. F. R., General Relativity and Cosmology (1971) [42] DOI: 10.1017/CBO9780511524646 · Zbl 0265.53054 [43] DOI: 10.1086/304265 [44] DOI: 10.1038/34124 [45] DOI: 10.1086/307221 · Zbl 1368.85002 [46] DOI: 10.1086/300499 [47] DOI: 10.1086/383612 · Zbl 1369.85001 [48] DOI: 10.1086/376865 [49] DOI: 10.1086/378560 [50] DOI: 10.1086/423365 [51] DOI: 10.1103/PhysRevLett.62.376 [52] DOI: 10.1016/0370-2693(90)90093-L This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.