×

zbMATH — the first resource for mathematics

A mathematical model of information transfer in ribbon synapses. (English) Zbl 1151.92305
J. Math. Sci., New York 147, No. 2, 6690-6701 (2007); translation from Fundam. Prikl. Mat. 11, No. 8, 205-221 (2005).
Summary: We make an attempt to construct a mathematical description of the physiological processes in presynaptic endings in semicircular canal hair cells of the vestibular system. The receptor potential of the hair cell is the model input. The intensity of the neurotransmitter entering into the synaptic cleft is the model output. The newest investigations established that signal processing which introduces slow adaptation in the afferent responses, must be interposed between the hair cell voltage and the afferent discharge. Afferent spike generation in the semicircular canals, however, results in relatively tonic spike trains in response to steps of current injection and is not likely to introduce the type of adaptation reported here. This leads to the hypothesis that the primary site for adaptation in the vestibular afferents is the synaptic transference between hair cell and afferent. As a case in point, we studied the adaptation of the neurotransmitter in response to the receptor potencial steps. Adequateness of the modeling results and the experimental data may be achieved by combined use of the dynamic and morphological experimental results.
MSC:
92C20 Neural biology
92C30 Physiology (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and D. Watson, Molecular Biology of the Cell, New York (1989).
[2] V. V. Alexandrov, T. B. Alexandrova, T. G. Astakhova, A. G. Yakushev, and E. Soto, ”Dynamics equations of the semicircular canal cupulo-endolymphatic system,” Differ. Uravn., 35, No. 4, 1–6 (1999).
[3] V. V. Alexandrov, A. Almanza, N. V. Kulikovskaya, R. Vega, T. B. Alexandrova, N. E. Shulenina, A. Limon, and E. Soto, ”A mathematical model of the total current dynamics in hair cells,” in: Mathematical Modeling of Complex Information-Processing Systems, Moscow University Press (2001), pp. 26–41.
[4] V. V. Alexandrov, T. G. Astakhova, and V. K. Trincher, ”A mathematical model of the vestibular canal function,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 5, 72–76 (1999).
[5] D. Beutner, T. Voets, E. Neher, and T. Moser, ”Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse,” Neuron, 29, 681–690 (2001). · doi:10.1016/S0896-6273(01)00243-4
[6] S. Borges, E. Gleason, M. Turelli, and M. Wilson, ”The kinetics of quantal transmitter release from retinal amacrine cells,” Proc. Natl. Acad. Sci. USA, 92, 6896–6900 (1995). · doi:10.1073/pnas.92.15.6896
[7] R. Boyle, J. P. Carey, and S. M. Highstein, ”Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents of the toadfish, Opsanus tau,” J. Neurophysiol., 66, 1504–1521 (1991).
[8] R. Boyle and S. M. Highstein, ”Resting discharge and response dynamics of horizontal semicircular canal afferents of the toadfish, Opsanus tau,” J. Neurosci., 10, 1557–1569 (1990).
[9] H. von Gersdorff, ”Synaptic ribbons: Versatile signal transducers,” Neuron, 29, 7–10 (2001). · doi:10.1016/S0896-6273(01)00175-1
[10] H. von Gersdorff and G. Matthews, ”Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals,” Nature, 367, 735–739 (1994). · doi:10.1038/367735a0
[11] H. von Gersdorff and G. Matthews, ”Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal,” J. Neurosci., 17, 1919–1927 (1997).
[12] H. von Gersdorff, T. Sakaba, K. Berglund, and M. Tachibana, ”Submillisecond kinetics of glutamate release from a sensory synapse,” Neuron, 21, 1177–1188 (1998). · doi:10.1016/S0896-6273(00)80634-0
[13] H. von Gersdorff, E. Vardi, G. Matthews, and P. Sterling, ”Evidence that vesicles on the synaptic ribbon or retinal bipolar neurons can be rapidly released,” Neuron, 16, 1221–1227 (1996). · doi:10.1016/S0896-6273(00)80148-8
[14] J. M. Goldberg and C. Fernandez, ”Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations,” J. Neurophysiol., 34, 635–660 (1971).
[15] J. M. Goldberg and C. Fernandez, ”Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharge properties,” J. Neurophysiol., 34, 676–684 (1971).
[16] P. S. Guth, P. Perin, C. H. Norris, and P. Valli, ”The vestibular hair cells: Post-transductional signal processing,” Progr. Neurobiol., 54, 193–247 (1998). · doi:10.1016/S0301-0082(97)00068-3
[17] S. M. Highstein, R. D. Rabbitt, G. R. Holstein, and R. D. Boyle, ”Determinants of spatial and temporal coding by semicircular canal afferents,” J. Neurophysiol., 93, 2359–2370 (2005). · doi:10.1152/jn.00533.2004
[18] D. Lenzi, J. Crum, M. H. Ellisman, and W. M. Roberts, ”Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at ribbon synapse,” Neuron, 36, 649–659 (2002). · doi:10.1016/S0896-6273(02)01025-5
[19] D. Lenzi and H. von Gersdorff, ”Structure suggests function: The case for synaptic ribbons as exocytotic nanomachines,” Bioessays, 23, 831–840 (2001). · doi:10.1002/bies.1118
[20] D. Lenzi, J. W. Runyeon, J. Crum, M. H. Ellisman, W. M. Roberts, ”Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography,” J. Neurosci., 19, 119–132 (1999).
[21] C. Martinez-Dunst, R. L. Michaels, and P. A. Fuchs, ”Release sites and calcium channels in hair cells of the chick cochlea,” J. Neurosci., 17, 9133–9144 (1997).
[22] G. Matthews, ”Synaptic mechanisms of bipolar cell terminals,” Vision Res., 39, 2469–2476 (1999). · doi:10.1016/S0042-6989(98)00249-1
[23] T. D. Parsons, D. Lenzi, W. Almers, and W. M. Roberts, ”Calcium triggered exocytosis and endocytosis in an isolated presynaptic cell: Capacitance measurement in saccular hair cells,” Neuron, 13, 875–883 (1994). · doi:10.1016/0896-6273(94)90253-4
[24] R. D. Rabbitt, R. D. Boyle, G. R. Holstein, and S. M. Highstein, ”Hair-cell versus afferent adaptation in the semicircular canals,” J. Neurophysiol., 93, 424–436 (2005). · doi:10.1152/jn.00426.2004
[25] W. M. Roberts, R. A. Jacobs, and A. J. Hudspeth, ”Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells,” J. Neurosci., 10, 3664–3684 (1990).
[26] V. A. Sadovnichy, V. V. Alexandrov, T. B. Alexandrova, A. Almanza, T. G. Astakhova, R. Vega, N. V. Kulikovskaya, E. Soto, and N. E. Shulenina, ”A mathematical model of the mechanoreceptor of angular acceleration,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 6, 46–54 (2002). · Zbl 1119.92302
[27] R. M. Schmich and M. I. Miller, ”Stochastic threshold characterization of the intensity of active channel dynamical action potential generation,” J. Neurophysiol., 78, 2616–2630 (1997).
[28] C. E. Smith and J. M. Goldberg, ”A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents,” Biol. Cybern., 54, 41–51 (1986). · doi:10.1007/BF00337114
[29] E. Soto, V. V. Alexandrov, T. B. Alexandrova, R. Cruz, R. Vega, and T. G. Astakhova, ”A mechanical coupling model for the axolotle (Ambystoma tigrinum) semicircular canal,” in: Mathematical Modeling of Complex Information-Processing Systems, Moscow University Press, Moscow (2001), pp. 15–25.
[30] M. Tachibana, ”Regulation of transmitter release from retinal bipolar cells,” Progr. Biophys. Molec. Biol., 109–133 (1999).
[31] B. J. Zenisek, A. Steye, and W. Almers, ”Transport, capture and exocytosis of single synaptic vesicles at active zones,” Nature, 406, 849–854 (2000). · doi:10.1038/35022500
[32] G. Zussa, L. Botta, and P. Vall, ”Evidence for L-glutamate release in frog vestibular organs,” Hearing Research, 52–56 (1992).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.