×

A general multiscroll Lorenz system family and its realization via digital signal processors. (English) Zbl 1151.94432

Editorial remark: No review copy delivered

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[2] DOI: 10.1038/35023206 · doi:10.1038/35023206
[3] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[4] A. Vaněček and S. Čelikovský ,Control Systems: From Linear Analysis to Synthesis of Chaos(Prentice-Hall, London, 1996).
[5] Lü, Int. J. Bifurcation Chaos Appl. Sci. Eng. 12 pp 659– (2002)
[6] Lü, Int. J. Bifurcation Chaos Appl. Sci. Eng. 12 pp 2917– (2002)
[7] G. Chen and J. Lü ,Dynamics of the Lorenz System Family: Analysis, Control and Synchronization(Science Press, Beijing, 2003) (in Chinese).
[8] Ozoguz, Int. J. Bifurcation Chaos Appl. Sci. Eng. 12 pp 1627– (2002)
[9] DOI: 10.1063/1.2183734 · Zbl 1144.37375 · doi:10.1063/1.2183734
[10] DOI: 10.1063/1.1741751 · Zbl 1080.37032 · doi:10.1063/1.1741751
[11] Zhong, Int. J. Bifurcation Chaos Appl. Sci. Eng. 12 pp 1423– (2002)
[12] Lü, Int. J. Bifurcation Chaos Appl. Sci. Eng. 14 pp 1507– (2004)
[13] Liu, Int. J. Bifurcation Chaos Appl. Sci. Eng. 13 pp 261– (2003)
[14] Ruchlidge, J. Fluid Mech. 237 pp 209– (1992)
[15] DOI: 10.1103/PhysRevE.50.R647 · doi:10.1103/PhysRevE.50.R647
[16] DOI: 10.1119/1.19538 · doi:10.1119/1.19538
[17] DOI: 10.1016/S0375-9601(00)00026-8 · doi:10.1016/S0375-9601(00)00026-8
[18] DOI: 10.1142/S0218127402004164 · Zbl 1044.37029 · doi:10.1142/S0218127402004164
[19] M. E. Yalcin, J. A. K. Suykens, and J. P. L. Vandewalle ,Cellular Neural Networks, Multi-Scroll Chaos and Synchronization(World Scientific, Singapore, 2005).
[20] DOI: 10.1109/81.964432 · doi:10.1109/81.964432
[21] Zhong, Int. J. Bifurcation Chaos Appl. Sci. Eng. 12 pp 2907– (2002)
[22] DOI: 10.1063/1.1478079 · doi:10.1063/1.1478079
[23] DOI: 10.1109/TCSI.2002.808241 · Zbl 1368.37041 · doi:10.1109/TCSI.2002.808241
[24] DOI: 10.1016/j.automatica.2004.06.001 · Zbl 1162.93353 · doi:10.1016/j.automatica.2004.06.001
[25] DOI: 10.1109/TCSI.2004.838151 · Zbl 1371.37060 · doi:10.1109/TCSI.2004.838151
[26] Yu, IEEE Trans. Circuits Syst.–I 52 pp 1459– (2005)
[27] Lü, IEEE Trans. Circuits Syst.–I 53 pp 149– (2006)
[28] Yu, Sci. China, Ser. F 46 pp 104– (2003)
[29] Lü, Int. J. Bifurcation Chaos Appl. Sci. Eng. 16 pp 775– (2006)
[30] DOI: 10.1016/0375-9601(93)90735-I · doi:10.1016/0375-9601(93)90735-I
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.