He, Tian-Xiao; Hsu, Leetsch C.; Shiue, Peter J.-S. A symbolic operator approach to several summation formulas for power series. II. (English) Zbl 1152.05304 Discrete Math. 308, No. 16, 3427-3440 (2008). Summary: [For part I, see He, T.X., Hsu, L.C., Shiue, P.J.-S., and Torney, D.C., J. Comput. Appl. Math. 177, No. 1, 17–33 (2005; Zbl 1064.65002).]A kind of symbolic operator method is expanded here that can be used to construct many transformation formulas and summation formulas for various types of power series including some old ones and more new ones. Cited in 6 Documents MSC: 05A15 Exact enumeration problems, generating functions 65B10 Numerical summation of series 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) 39A70 Difference operators 41A80 Remainders in approximation formulas Keywords:symbolic operator; power series; generalized Eulerian fractions; Stirling number of the second kind Citations:Zbl 1064.65002 PDF BibTeX XML Cite \textit{T.-X. He} et al., Discrete Math. 308, No. 16, 3427--3440 (2008; Zbl 1152.05304) Full Text: DOI Link OpenURL References: [1] Comtet, L., Advanced combinatorics, (1974), Reidel Dordrecht [2] G.P. Egorychev, Integral Representation and the Computation of Combinatorial Sums, Translation of Mathematical Monographs, vol. 59, American Mathematical Society, Providence, RI, 1984. · Zbl 0524.05001 [3] Gould, H.W., Inverse series relations and other expansions involving Humbert polynomials, Duke math. J., 32, 697-711, (1965) · Zbl 0135.12001 [4] Gould, H.W., Combinatorial identities, (1972), Morgantown WV · Zbl 0263.05013 [5] Gould, H.W.; Wetweerapong, J., Evaluation of some classes of binomial identities and two new sets of polynomials, Indian J. math., 41, 2, 159-190, (1999) · Zbl 1034.05002 [6] He, T.X.; Hsu, L.C.; Shiue, P.J.-S., On the convergence of the summation formulas constructed by using a symbolic operator approach, Comput. math. appl., 51, 3-4, 441-450, (2006) · Zbl 1228.65005 [7] He, T.X.; Hsu, L.C.; Shiue, P.J.-S., Symbolization of generating functions, an application of mullin – rota’s theory of binomial enumeration, Comput. math. appl., 54, 5, 664-678, (2007) · Zbl 1155.65300 [8] He, T.X.; Hsu, L.C.; Shiue, P.J.-S.; Torney, D.C., A symbolic operator approach to several summation formulas for power series, J. comput. appl. math., 177, 17-33, (2005) · Zbl 1064.65002 [9] Howard, F.T., Degenerate weighted Stirling numbers, Discrete math., 57, 1, 45-58, (1985) · Zbl 0606.10009 [10] Hsu, L.C.; Shiue, P.J.-S., Cycle indicators and special functions, Ann. combin., 5, 179-196, (2001) · Zbl 0987.05007 [11] Jolley, L.B.W., Summation of series, (1961), Dover Publications New York · Zbl 0101.28602 [12] Jordan, Ch., Calculus of finite differences, (1965), Chelsea New York [13] Petkovšek, M.; Wilf, H.S.; Zeilberger, D., \(\operatorname{A} = \operatorname{B}\), (1996), AK Peters, Ltd. Wellesley, MA [14] Roman, S.; Rota, G.-C., The umbral calculus, Adv. math., 95-188, (1978) · Zbl 0375.05007 [15] Sofo, A., Computational techniques for the summation of series, (2003), Kluwer Academic Publishers New York · Zbl 1059.65002 [16] Wang, X.-H.; Hsu, L.C., A summation formula for power series using Eulerian fractions, Fibonacci quart., 41, 1, 23-30, (2003) · Zbl 1027.11013 [17] Wilf, H.S., Generatingfunctionology, (1994), Academic Press New York · Zbl 0831.05001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.