×

A symbolic operator approach to several summation formulas for power series. II. (English) Zbl 1152.05304

Summary: [For part I, see He, T.X., Hsu, L.C., Shiue, P.J.-S., and Torney, D.C., J. Comput. Appl. Math. 177, No.1, 17–33 (2005; Zbl 1064.65002).]
A kind of symbolic operator method is expanded here that can be used to construct many transformation formulas and summation formulas for various types of power series including some old ones and more new ones.

MSC:

05A15 Exact enumeration problems, generating functions
65B10 Numerical summation of series
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
39A70 Difference operators
41A80 Remainders in approximation formulas

Citations:

Zbl 1064.65002
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Comtet, L., Advanced Combinatorics (1974), Reidel: Reidel Dordrecht
[3] Gould, H. W., Inverse series relations and other expansions involving Humbert polynomials, Duke Math. J., 32, 697-711 (1965) · Zbl 0135.12001
[4] Gould, H. W., Combinatorial Identities (1972), Morgantown: Morgantown WV · Zbl 0263.05013
[5] Gould, H. W.; Wetweerapong, J., Evaluation of some classes of binomial identities and two new sets of polynomials, Indian J. Math., 41, 2, 159-190 (1999) · Zbl 1034.05002
[6] He, T. X.; Hsu, L. C.; Shiue, P. J.-S., On the convergence of the summation formulas constructed by using a symbolic operator approach, Comput. Math. Appl., 51, 3-4, 441-450 (2006) · Zbl 1228.65005
[7] He, T. X.; Hsu, L. C.; Shiue, P. J.-S., Symbolization of generating functions, an application of Mullin-Rota’s theory of binomial enumeration, Comput. Math. Appl., 54, 5, 664-678 (2007) · Zbl 1155.65300
[8] He, T. X.; Hsu, L. C.; Shiue, P. J.-S.; Torney, D. C., A symbolic operator approach to several summation formulas for power series, J. Comput. Appl. Math., 177, 17-33 (2005) · Zbl 1064.65002
[9] Howard, F. T., Degenerate weighted Stirling numbers, Discrete Math., 57, 1, 45-58 (1985) · Zbl 0606.10009
[10] Hsu, L. C.; Shiue, P. J.-S., Cycle indicators and special functions, Ann. Combin., 5, 179-196 (2001) · Zbl 0987.05007
[11] Jolley, L. B.W., Summation of Series (1961), Dover Publications: Dover Publications New York · Zbl 0101.28602
[12] Jordan, Ch., Calculus of Finite Differences (1965), Chelsea: Chelsea New York
[13] Petkovšek, M.; Wilf, H. S.; Zeilberger, D., \(A = B (1996)\), AK Peters, Ltd.: AK Peters, Ltd. Wellesley, MA
[14] Roman, S.; Rota, G.-C., The umbral calculus, Adv. Math., 95-188 (1978) · Zbl 0375.05007
[15] Sofo, A., Computational Techniques for the Summation of Series (2003), Kluwer Academic Publishers: Kluwer Academic Publishers New York · Zbl 1059.65002
[16] Wang, X.-H.; Hsu, L. C., A summation formula for power series using Eulerian fractions, Fibonacci Quart., 41, 1, 23-30 (2003) · Zbl 1027.11013
[17] Wilf, H. S., Generatingfunctionology (1994), Academic Press: Academic Press New York · Zbl 0831.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.