×

The restricted Nagata’s pairwise algorithm and the Euclidean algorithm. (English) Zbl 1152.13016

M. Nagata introduced [in: Algebraic geometry seminar. Proceedings of the seminar, Singapore, November 3–6, 1987. Singapore: World Scientific, 69–74 (1988; Zbl 0947.14500)] a generalization of the Euclidean algorithm. The author presents a modification of this algorithm, develops its properties and shows that if this algorithm exists in a ring of integers of a quadratic number field \(Q(\sqrt{-d})\), then \(d=1,2,3,7\) or \(11\).

MSC:

13F07 Euclidean rings and generalizations
11R04 Algebraic numbers; rings of algebraic integers

Citations:

Zbl 0947.14500
PDFBibTeX XMLCite
Full Text: Euclid

References:

[1] W.-Y. Chen and M.-G. Leu: On Nagata’s pairwise algorithm , J. Algebra 165 (1994), 194–203. · Zbl 0829.13012 · doi:10.1006/jabr.1994.1106
[2] G.E. Cooke: A weakening of the Euclidean property for integral domains and applications to algebraic number theory I, J. Reine Angew. Math. 282 (1976), 133–156. · Zbl 0328.13013 · doi:10.1515/crll.1976.282.133
[3] M. Harper: \(\mathbb{Z}[\sqrt{14}]\) is Euclidean , Canad. J. Math. 56 (2004), 55–70. · Zbl 1048.11079 · doi:10.4153/CJM-2004-003-9
[4] Th. Motzkin: The Euclidean algorithm , Bull. Amer. Math. Soc. 55 (1949), 1142–1146. · Zbl 0035.30302 · doi:10.1090/S0002-9904-1949-09344-8
[5] M. Nagata: On Euclid algorithm ; in C.P. Ramanujan—A Tribute, Tata Inst. Fund. Res. Studies in Math. 8 , Springer, Berlin, 1978, 175–186. · Zbl 0422.13012
[6] M. Nagata: On the definition of a Euclid ring ; in Commutative Algebra and Combinatorics (Kyoto, 1985), Adv. Stud. Pure Math. 11 , North-Holland, Amsterdam, 1987, 167–171. · Zbl 0701.13008
[7] M. Nagata: A pairwise algorithm and its application to \(\textbf{Z}[\sqrt{14}]\) ; in Algebraic Geometry Seminar (Singapore, 1987), World Sci. Publishing, Singapore, 1988, 69–74.
[8] M. Nagata: Pairwise algorithms and Euclid algorithms ; in Collection of Papers Dedicated to Prof. Jong Geun Park on His Sixtieth Birthday (Korean), Jeonbug, Seoul, 1989, 1–9.
[9] P. Samuel: About Euclidean rings , J. Algebra 19 (1971), 282–301. · Zbl 0223.13019 · doi:10.1016/0021-8693(71)90110-4
[10] R.L. Vaught: Set Theory, Birkhäuser Boston, Boston, MA, 1985.
[11] P.J. Weinberger: On Euclidean rings of algebraic integers ; in Analytic Number Theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), Amer. Math. Soc., Providence, R.I., 1973, 321–332. · Zbl 0287.12012
[12] O. Zariski and P. Samuel: Commutative Algebra, I, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986. · Zbl 0121.27801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.