zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of a solution and a positive solution of a boundary value problem for a nonlinear fourth-order dynamic equation. (English) Zbl 1152.34322
Summary: By using the Schauder fixed point theorem, we offer some existence criteria for a solution and a positive solution to the following fourth-order two-point boundary value problem on time scale $\Bbb T$: $$u^{\Delta\Delta\Delta\Delta}(t)= f(t,u(t), u^{\Delta\Delta}(t))= 0, \quad t\in [a,\rho^2(b)],$$ $$u(a)=A, \quad u(\sigma^2(b))=B, \quad u^{\Delta\Delta}(a)= C, \quad u^{\Delta\Delta}(b)=D,$$ where $a,b\in\Bbb T$ and $a<b$.

34B15Nonlinear boundary value problems for ODE
34B18Positive solutions of nonlinear boundary value problems for ODE
39A10Additive difference equations
47N20Applications of operator theory to differential and integral equations
Full Text: DOI
[1] Agarwal, R. P.; Bohner, M.: Basic calculus on time scales and some of its applications, Results math. 35, 3-22 (1999) · Zbl 0927.39003
[2] Agarwal, R. P.; Bohner, M.; Wong, P.: Sturm--Liouville eigenvalue problems on time scales, Appl. math. Comput. 99, 153-166 (1999) · Zbl 0938.34015 · doi:10.1016/S0096-3003(98)00004-6
[3] Agarwal, R. P.; O’regan, D.: Nonlinear boundary value problems on time scales, Nonlinear anal. 44, 527-535 (2001) · Zbl 0995.34016 · doi:10.1016/S0362-546X(99)00290-4
[4] Anderson, D.: Solutions to second-order three-point problems on time scales, J. differential equations appl. 8, 673-688 (2002) · Zbl 1021.34011 · doi:10.1080/10236919021000000726
[5] Atici, E. M.; Guseinov, G. Sh.: On Green’s functions and positive solutions for boundary value problems on time scales, J. comput. Appl. math. 141, 75-99 (2002) · Zbl 1007.34025 · doi:10.1016/S0377-0427(01)00437-X
[6] Aftabizadeh, A. R.: Existence and uniqueness theorems for fourth-order boundary value problems, J. math. Anal. appl. 116, 415-426 (1986) · Zbl 0634.34009 · doi:10.1016/S0022-247X(86)80006-3
[7] Bohner, M.; Peterson, A.: Dynamic equations on time scales, (2001) · Zbl 0993.39010
[8] Chyan, C. J.; Henderson, J.: Eigenvalue problems for nonlinear differential equations on a measure chain, J. math. Anal. appl. 245, 547-559 (2000) · Zbl 0953.34068 · doi:10.1006/jmaa.2000.6781
[9] Del Pino, M. A.; Manasevich, R. F.: Existence for fourth-order boundary value problem under a two-parameter nonresonance condition, Proc. amer. Math. soc. 112, 81-86 (1991) · Zbl 0725.34020 · doi:10.2307/2048482
[10] Erbe, L.; Hilger, S.: Sturmian theory on measure chains, Differential equations dynam. Systems 1, 223-246 (1993) · Zbl 0868.39007
[11] Erbe, L.; Peterson, A.: Positive solutions for a nonlinear differential equation on a measure chain, Math. comput. Modelling 32, No. 5--6, 571-585 (2000) · Zbl 0963.34020 · doi:10.1016/S0895-7177(00)00154-0
[12] Topal, S. Gulsan: Second-order periodic boundary value problems on time scales, Comput. math. Appl. 48, 637-648 (2004) · Zbl 1068.34016 · doi:10.1016/j.camwa.2002.04.005
[13] Henderson, J.; Yin, W. K. C.: Existence of solutions for third-order boundary value problems on a time scale, Comput. math. Appl. 45, 1101-1111 (2003) · Zbl 1057.39011 · doi:10.1016/S0898-1221(03)00091-9
[14] Hilger, S.: Analysis on measure chains--a unified approach to continuous and discrete calculus, Results math. 18, 18-56 (1990) · Zbl 0722.39001
[15] Kaymakcalan, B.; Lakshmikanthan, V.; Sivasundaram, S.: Dynamic systems on measure chains, (1996) · Zbl 0869.34039
[16] Liu, B.: Positive solutions of fourth-order two point boundary value problems, Appl. math. Comput. 148, 407-420 (2004) · Zbl 1039.34018 · doi:10.1016/S0096-3003(02)00857-3
[17] Ma, R.: Positive solutions of fourth-order two point boundary value problems, Ann. differential equations 15, 305-313 (1999) · Zbl 0964.34021
[18] Sun, J. P.: Existence of solution and positive solution of BVP for nonlinear third-order dynamic equation, Nonlinear anal. 64, 629-636 (2006) · Zbl 1099.34022 · doi:10.1016/j.na.2005.04.046
[19] Usmani, R. A.: A uniqueness theorem for a boundary value problem, Proc. amer. Math. soc. 77, 327-335 (1979) · Zbl 0424.34019 · doi:10.2307/2042181
[20] Yang, Y.: Fourth-order two-point boundary value problem, Proc. amer. Math. soc. 104, 175-180 (1988) · Zbl 0671.34016 · doi:10.2307/2047481
[21] Yao, Q.: Solution and positive solution for a semilinear third-order two-point boundary value problem, Appl. math. Lett. 17, 1171-1175 (2004) · Zbl 1061.34012 · doi:10.1016/j.aml.2003.09.011