zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational approach for nonlinear oscillators. (English) Zbl 1152.34327
Summary: We propose a novel variational approach for limit cycles of a kind of nonlinear oscillators. Some examples are given to illustrate the effectiveness and convenience of the method. The obtained results are valid for the whole solution domain with high accuracy.

MSC:
34C05Location of integral curves, singular points, limit cycles (ODE)
49M15Newton-type methods in calculus of variations
65L10Boundary value problems for ODE (numerical methods)
WorldCat.org
Full Text: DOI
References:
[1] He, J. H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos, solitons & fractals 19, No. 4, 847-851 (2004) · Zbl 1135.35303
[2] He, J. H.: Variational theory for one-dimensional longitudinal beam dynamics. Phys lett A 352, No. 4 -- 5, 276-277 (2006) · Zbl 1187.74108
[3] He, J. H.: A generalized variational principle in micromorphic thermoelasticity. Mech res commun 32, No. 1, 93-98 (2005) · Zbl 1091.74012
[4] Liu, H. M.: Generalized variational principles for ion acoustic plasma waves by he’s semi-inverse method. Chaos, solitons & fractals 23, No. 2, 573-576 (2005) · Zbl 1135.76597
[5] Wu, Y.: Variational approach to higher-order water-wave equations. Chaos, solitons & fractals 32, No. 1, 195-198 (2007) · Zbl 1131.76015
[6] Xu L. Variational approach to solitons of nonlinear dispersive K(m,n) equations, Chaos, Solitons & Fractals [in press]. doi:10.1016/j.chaos.2006.08.016.
[7] He, J. H.: Some asymptotic methods for strongly nonlinear equations. Int J mod phys B 20, No. 10, 1141-1199 (2006) · Zbl 1102.34039
[8] He JH. Non-perturbative methods for strongly nonlinear problems. Dissertation, de-Verlag im Internet GmbH, Berlin; 2006.
[9] He, J. H.: Preliminary report on the energy balance for nonlinear oscillations. Mech res commun 29, No. 2 -- 3, 107-111 (2002) · Zbl 1048.70011
[10] He, J. H.: Determination of limit cycles for strongly nonlinear oscillators. Phys rev lett 90, No. 17 (2003)
[11] D’acunto, M.: Determination of limit cycles for a modified van der Pol oscillator. Mech res commun 33, No. 1, 93-98 (2006)
[12] D’acunto, M.: Self-excited systems: analytical determination of limit cycles. Chaos, solitons & fractals 30, No. 3, 719-724 (2006) · Zbl 1142.70010
[13] He, J. H.: Variational iteration method -- a kind of non-linear analytical technique: some examples. Int J nonlinear mech 34, No. 4, 699-708 (1999) · Zbl 05137891
[14] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comp meth appl mech eng 167, No. 1 -- 2, 57-68 (1998) · Zbl 0942.76077
[15] He, J. H.: Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comp meth appl mech eng 167, No. 1 -- 2, 69-73 (1998) · Zbl 0932.65143
[16] He, J. H.: Variational iteration method for autonomous ordinary differential systems. Appl math comput 114, No. 2 -- 3, 115-123 (2000) · Zbl 1027.34009
[17] He, J. H.; Wu, X. H.: Construction of solitary solution and compacton-like solution by variational iteration method. Chaos, solitons & fractals 29, No. 1, 108-113 (2006) · Zbl 1147.35338
[18] Ji-Huan He, Variational iteration method --- Some recent results and new interpretations, Comput Math Appl [in press]. · Zbl 1119.65049
[19] Ji-Huan He, Xu-Hong Wu Variational iteration method: new development and applications by computers and mathematics with applications; [in press].
[20] Odibat, Z. M.; Momani, S.: Application of variational iteration method to nonlinear differential equations of fractional order. Int J nonlinear sci numer simulat 7, No. 1, 27-34 (2006) · Zbl 05675858
[21] Bildik, N.; Konuralp, A.: The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations. Int J nonlinear sci numer simulat 7, No. 1, 65-70 (2006) · Zbl 1115.65365
[22] Momani, S.; Abuasad, S.: Application of he’s variational iteration method to Helmholtz equation. Chaos, solitons & fractals 27, No. 5, 1119-1123 (2006) · Zbl 1086.65113