zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Note on the permanence of a competitive system with infinite delay and feedback controls. (English) Zbl 1152.34366
Summary: Sufficient conditions are obtained for the permanence of a two species competitive system with infinite delay and feedback controls. It is shown that the controls can avoid the extinction of the species.

MSC:
34K12Growth, boundedness, comparison of solutions of functional-differential equations
34C25Periodic solutions of ODE
92D25Population dynamics (general)
34D20Stability of ODE
34D40Ultimate boundedness (MSC2000)
WorldCat.org
Full Text: DOI
References:
[1] Ahmad, S.: On the nonautonomous Volterra -- Lotka competition equations. Proc. amer. Math. soc. 117, 119-204 (1993) · Zbl 0848.34033
[2] Chen, F. D.: Global asymptotic stability in n-species nonautonomous Lotka -- Volterra competitive systems with infinite delays and feedback control. Appl. math. Comput. 170, No. 2, 1452-1468 (2005) · Zbl 1081.92038
[3] Chen, F. D.: Positive periodic solutions of neutral Lotka -- Volterra system with feedback control. Appl. math. Comput. 162, No. 3, 1279-1302 (2005) · Zbl 1125.93031
[4] Chen, F. D.: On a nonlinear non-autonomous predator -- prey model with diffusion and distributed delay. J. comput. Appl. math. 180, No. 1, 33-49 (2005) · Zbl 1061.92058
[5] Chen, F. D.: The permanence and global attractivity of Lotka -- Volterra competition system with feedback controls. Nonlinear anal.: real world appl. 7, No. 1, 133-143 (2006) · Zbl 1103.34038
[6] F.D. Chen, Average conditions for permanence and extinction in nonautonomous Gilpin -- Ayala competition model, Nonlinear Anal. Real World Appl., in press. · Zbl 1119.34038
[7] F.D. Chen, Some new results on the permanence and extinction of nonautonomous GilpinCAyala type competition model with delays, Nonlinear Anal. Real World Appl., in press.
[8] Chen, F. D.: Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models with feedback control. Appl. math. Comput. 158, No. 1, 45-68 (2004) · Zbl 1096.93017
[9] Chen, F. D.: Positive periodic solutions of a class of non-autonomous single species population model with delays and feedback control. Acta math. Sinica 21, No. 6, 1319-1336 (2005) · Zbl 1110.34049
[10] Fan, M.; Wong, P. J. Y.; Agarwal, R. P.: Periodicity and stability in periodic n-species Lotka -- Volterra competition system with feedback controls and deviating arguments. Acta math. Sinica 19, No. 4, 801-822 (2003) · Zbl 1047.34080
[11] Gopalsamy, K.; Weng, P. X.: Global attractivity in a competition system with feedback controls. Comput. math. Appl. 45, No. 4 -- 5, 665-676 (2003) · Zbl 1059.93111
[12] Hale, J. K.: Theory of functional differential equations. (1977) · Zbl 0352.34001
[13] Hirsch, W.; Hanisch, H.; Gabriel, J.: Differential equation models of some parasitic infection --- methods for the study of asymptotic behavior. Comm. pure appl. Math. 38, 733-753 (1985) · Zbl 0637.92008
[14] Huang, Z. K.; Chen, F. D.: Almost periodic solution of two species model with feedback regulation and infinite delay. Chinese J. Eng. math. 21, No. 1, 33-40 (2004) · Zbl 1138.34344
[15] Huo, H. F.; Li, W. T.: Positive periodic solutions of a class of delay differential system with feedback control. Appl. math. Comput. 148, No. 1, 35-46 (2004) · Zbl 1057.34093
[16] Li, Y. K.: Positive periodic solutions for a periodic neutral differential equation with feedback control. Nonlinear anal.: real world appl. 6, No. 1, 145-154 (2005) · Zbl 1092.34033
[17] Li, W. T.; Wang, L. L.: Existence and global attractivity of positive periodic solutions of functional differential equations with feedback control. J. comput. Appl. math. 180, No. 2, 293-309 (2005) · Zbl 1069.34100
[18] B. Lisena, Competitive exclusion in a periodic Lotka -- Volterra system, Appl. Math. Comput., in press. · Zbl 1100.92070
[19] F. Montes de Oca, M. Vivas, Extinction in a two dimensional Lotka -- Volterra system with infinite delay, Nonlinear Anal.: Real World Appl., in press. · Zbl 1122.34058
[20] Muroya, Y.: Boundedness and partial survival of species in nonautonomous Lotka -- Volterra systems. Nonlinear anal.: real world appl. 6, No. 2, 263-272 (2005) · Zbl 1077.34077
[21] Teng, Z.: On the nonautonomous Lotka -- Volterra N-species competing systems. Appl. math. Comput. 114, 175-185 (2000) · Zbl 1016.92045
[22] Teng, Z. D.: On the permanence and extinction in nonautonomous Lotka -- Volterra competitive systems with delays. Acta math. Sinica 44, No. 2, 293-306 (2001) · Zbl 1033.34079
[23] Teng, Z. D.; Yu, Y. H.: Some new results of nonautonomous Lotka -- Volterra competitive systems with delays. J. math. Anal. appl. 241, 254-275 (2000) · Zbl 0947.34066
[24] Tineo, A.: Asymptotic behavior of positive solutions of the nonautonomous Lotka -- Volterra competition equations. Differential integral equations 6, 419-457 (1993) · Zbl 0774.34037
[25] Weng, P.: Existence and global stability of positive periodic solution of periodic integro-differential systems with feedback controls. Comput. math. Appl. 40, No. 6 -- 7, 747-759 (2000) · Zbl 0962.45003
[26] Xiao, Y. N.; Tang, S. Y.; Chen, J. F.: Permanence and periodic solution in competitive system with feedback controls. Math. comput. Modelling 27, No. 6, 33-37 (1998) · Zbl 0896.92032
[27] Yin, F. Q.; Li, Y. K.: Positive periodic solutions of a single species model with feedback regulation and distributed time delay. Appl. math. Comput. 153, No. 2, 475-484 (2004) · Zbl 1087.34051
[28] Zhao, J. D.; Jiang, J. F.: Average conditions for permanence and extinction in nonautonomous Lotka -- Volterra system. J. math. Anal. appl. 299, 663-675 (2004) · Zbl 1066.34050