zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Further results on passivity analysis of delayed cellular neural networks. (English) Zbl 1152.34380
Summary: The passivity condition for delayed neural networks with uncertainties is considered in this article. From simple extension of a recent work for stability analysis of the system, a new criterion for the passivity of the system is derived in terms of linear matrix inequalities (LMIs), which can be easily solved by using various convex optimization algorithms. A numerical example is given to show the usefulness of our result.

34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
93D09Robust stability of control systems
LMI toolbox
Full Text: DOI
[1] Hopfield, J.: Proc natl acad sci USA. 81, 3088 (1984)
[2] Guo, S. J.; Huang, L. H.; Dai, B. X.; Zhang, Z. Z.: Phys lett A. 317, 97 (2003)
[3] Zhao, H.: Phys lett A. 297, 182 (2002)
[4] Li, Y.: Chaos, solitons & fractals. 24, 279 (2005)
[5] Cao, J.: Int J systems sci. 31, 1313 (2000)
[6] Chen, A.; Huang, L.; Cao, J.: Appl math comput. 137, 177 (2003)
[7] Liang, J.; Cao, J.: Chaos, solitons & fractals. 22, 773 (2004)
[8] Huang, X.; Cao, J.; Huang, D. S.: Chaos, solitons & fractals. 24, 885 (2005)
[9] Huang, L.; Huang, C.; Liu, B.: Phys lett A. 345, 330 (2005)
[10] Arik, S.: Phys lett A. 311, 504 (2003)
[11] Zhang, Q.; Wei, X.; Xu, J.: Phys lett A. 318, 399 (2003)
[12] Zhang, H.; Li, C.; Liao, X.: Chaos, solitons & fractals. 25, 357 (2005)
[13] Park, J. H.: Chaos, solitons & fractals. 29, 446 (2006) · Zbl 1142.93348
[14] Cho HJ, Park JH. Chaos, Solitons & Fractals; in press. doi:10.1016/j.chaos.2005.11.040.
[15] Willems, J. C.: Arch ration mech anal. 45, 321 (1972)
[16] Lozano, R.; Brogliato, B.; Egeland, O.; Maschke, B.: Dissipative systems analysis and control: theory and applications. (2000) · Zbl 0958.93002
[17] Wei DQ, Luo XS. Chaos, Solitons & Fractals; in press. doi:10.1016/j.chaos.2005.10.097.
[18] Li, C.; Liao, X.: IEEE trans circuits syst II express briefs. 52, 471 (2005)
[19] Boyd, B.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory. (1994) · Zbl 0816.93004
[20] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M.: LMI control toolbox user’s guide. (1995)