zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pullback attractors for a non-autonomous incompressible non-Newtonian fluid. (English) Zbl 1152.35012
In the present study the authors discuss the existence and regularity of pullback attractors for the following non-autonomous incompressible non-Newtonian fluid in 2D bounded domains: $${\partial u\over\partial t}+ (u\cdot\nabla) u+\nabla p= \nabla\cdot\tau(e(u))+ g(x, t),\quad x= (x_1,x_2)\in \Omega,\tag1$$ $$\nabla\cdot u= 0,\tag2$$ where $\Omega$ is a smooth bounded domain of $\bbfR^2$, $u= u(x,t)= (u^{(1)}(x,t), u^{(2)}(x, t))$, $g(x,t)= g(t)= (g^{(1)}(x,t), g^{(2)}(x, t))$, the scalar function $p$ represents the pressure. Equations (1)--(2) describe the motion of an isothermal incompressible viscous fluid, where $\tau(e(u))= (\tau_{ij}(e(u)))_{2\times 2}$ which is usually called the extra stress tensor of the fluid.

MSC:
35B41Attractors (PDE)
35Q35PDEs in connection with fluid mechanics
76D03Existence, uniqueness, and regularity theory
WorldCat.org
Full Text: DOI
References:
[1] Arnold, L.: Random dynamical systems. (1998) · Zbl 0906.34001
[2] Adams, R. A.: Sobolev spaces. (1975) · Zbl 0314.46030
[3] Babin, A. V.; Vishik, M. I.: Attractors of evolution equations. (1992) · Zbl 0778.58002
[4] Bae, Hyeong-Ohk: Existence, regularity, and decay rate of solutions of non-Newtonian flow. J. math. Anal. appl. 231, 467-491 (1999) · Zbl 0920.76007
[5] Ball, J. M.: Continuity properties of global attractors of generalized semiflows and the Navier -- Stokes equations. J. nonlinear sci. 7, 475-502 (1997) · Zbl 0903.58020
[6] Bellout, H.; Bloom, F.; Nečas, J.: Weak and measure-valued solutions for non-Newtonian fluids. C. R. Acad. sci. Paris 317, 795-800 (1993) · Zbl 0784.76005
[7] Bellout, H.; Bloom, F.; Nečas, J.: Young measure-valued solutions for non-Newtonian incompressible viscous fluids. Comm. partial differential equations 19, 1763-1803 (1994) · Zbl 0840.35079
[8] Bloom, F.; Hao, W.: Regularization of a non-Newtonian system in an unbounded channel: existence and uniqueness of solutions. Nonlinear anal. 44, 281-309 (2001) · Zbl 0993.76004
[9] Bloom, F.; Hao, W.: Regularization of a non-Newtonian system in an unbounded channel: existence of a maximal compact attractor. Nonlinear anal. 43, 743-766 (2001) · Zbl 0989.76003
[10] Boukrouche, M.; łukaszewicz, G.; Real, J.: On pullback attractors for a class of two-dimensional turbulent shear flows. Internat. J. Engrg. sci. 44, 830-844 (2006) · Zbl 1213.76096
[11] Caraballo, T.; łukaszewicz, G.; Real, J.: Pullback attractors for non-autonomous 2D-Navier -- Stokes equations in some unbounded domains. C. R. Math. 342, 263-268 (2006) · Zbl 1085.37054
[12] Caraballo, T.; łukaszewicz, G.; Real, J.: Pullback attractors for asymptotically compact non-autonomous dynamical systems. Nonlinear anal. 64, 484-498 (2006) · Zbl 1128.37019
[13] Caraballo, T.; Langa, J. A.: Attractors for differential equations with variable delay. J. math. Anal. appl. 260, 421-438 (2001) · Zbl 0997.34073
[14] Caraballo, T.; Langa, J. A.: On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems. Dyn. contin. Discrete impuls. Syst. 10, 491-513 (2003) · Zbl 1035.37013
[15] Caraballo, T.; Real, J.: Navier -- Stokes equations with delays. Proc. R. Soc. lond. Ser. A math. Phys. eng. Sci. 457, 2441-2453 (2001) · Zbl 1007.35062
[16] Caraballo, T.; Real, J.: Asymptotic behaviour of Navier -- Stokes equations with delays. Proc. R. Soc. lond. Ser. A math. Phys. eng. Sci. 459, 3181-3194 (2003) · Zbl 1057.35027
[17] Caraballo, T.; Real, J.: Attractors for 2D-Navier -- Stokes models with delays. J. differential equations 205, 271-297 (2004) · Zbl 1068.35088
[18] Caraballo, T.; Kloeden, P. E.; Rubio, P. M.: Weak pullback attractors of setvalued processes. J. math. Anal. appl. 288, 692-707 (2003) · Zbl 1044.93035
[19] Caraballo, T.; Rubio, P. M.; Valero, J.: Autonomous and non-autonomous attractors for differential equations with delays. J. differential equations 208, 9-41 (2005) · Zbl 1074.34070
[20] Cheban, D. N.; Kloeden, P. E.; Schmalfuss, B.: The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems. Nonlinear dyn. Syst. theory 2, 9-28 (2002)
[21] Chepyzhov, V. V.; Vishik, M. I.: Attractors for equations of mathematical physics. Amer. math. Soc. colloq. Publ. 49 (2002) · Zbl 0986.35001
[22] Crauel, H.; Debussche, A.; Flandoli, F.: Random attractors. J. dynam. Differential equations 9, 307-341 (1995) · Zbl 0884.58064
[23] Flandoli, F.; Schmalfuss, B.: Random attractors for the 3D stochastic Navier -- Stokes equation with multiplicative white noise. Stoch. stoch. Rep. 59, 21-45 (1996) · Zbl 0870.60057
[24] Guo, B.; Zhu, P.: Partial regularity of suitable weak solution to the system of the incompressible non-Newtonian fluids. J. differential equations 178, 281-297 (2002) · Zbl 1027.35102
[25] Hale, J. K.: Asymptotic behavior of dissipative systems. (1988) · Zbl 0642.58013
[26] Ju, N.: The H1-compact global attractor for the solutions to the Navier -- Stokes equations in 2D unbounded domains. Nonlinearity 13, 1227-1238 (2000) · Zbl 0979.35116
[27] Ju, N.: Existence of global attractor for the three-dimensional modified Navier -- Stokes equations. Nonlinearity 14, 777-786 (2001) · Zbl 0995.35052
[28] Kloeden, P. E.; Schmalfuss, B.: Nonautonomous systems, cocycle attractors and variable time-step discretization. Numer. algorithms 14, 141-152 (1997) · Zbl 0886.65077
[29] Kloeden, P. E.; Schmalfuss, B.: Asymptotic behaviour of nonautonomous difference inclusions. Systems control lett. 33, 275-280 (1998) · Zbl 0902.93043
[30] Ladyzhenskaya, O.: New equations for the description of the viscous incompressible fluids and solvability in large of the boundary value problems for them. Boundary value problems of mathematical physics (1970)
[31] Ladyzhenskaya, O.: Attractors for semigroups and evolution equations. (1991) · Zbl 0755.47049
[32] Langa, J. A.; Schmalfuss, B.: Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differential equations. Stoch. dyn. 4, 385-404 (2004) · Zbl 1057.37069
[33] Langa, J. A.; łukaszewicz, G.; Real, J.: Finite fractal dimension of pullback attractors for non-autonomous 2D Navier -- Stokes equations in some unbounded domains. Nonlinear anal. 66, 735-749 (2007) · Zbl 1113.37055
[34] łukaszewicz, G.; Sadowski, W.: Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains. Z. angew. Math. phys. 55, 247-257 (2004) · Zbl 1055.35026
[35] Lu, S.: Attractors for nonautonomous 2D Navier -- Stokes equations with less regular normal forces. J. differential equations 230, 196-212 (2006) · Zbl 1112.35029
[36] Lu, S.; Wu, H.; Zhong, C.: Attractors for nonautonomous 2D Navier -- Stokes equations with normal external forces. Discrete contin. Dyn. syst. 13, 701-719 (2005) · Zbl 1083.35094
[37] Ma, Q.; Wang, S.; Zhong, C.: Necessary and sufficient conditions for the existence of global attractors for semigroup and application. Indiana univ. Math. J. 51, No. 6, 1541-1559 (2002) · Zbl 1028.37047
[38] Ma, Q.; Zhong, C.: Existence of global attractors for the coupled system of suspension Bridge equations. J. math. Anal. appl. 308, 365-379 (2005) · Zbl 1080.35008
[39] Málek, J.; Nečas, J.; Rokyta, M.; Ru\dot{}žičk, M.: Weak and measure-valued solutions to evolutionary pdes. (1996)
[40] Pokorný, M.: Cauchy problem for the non-Newtonian viscous incompressible fluids. Appl. math. 41, 169-201 (1996) · Zbl 0863.76003
[41] Robinson, J. C.: Infinite-dimensional dynamical systems. (2001) · Zbl 1026.37500
[42] Rosa, R.: The global attractor for the 2D Navier -- Stokes flow on some unbounded domains. Nonlinear anal. 32, 71-85 (1998) · Zbl 0901.35070
[43] Schmalfuss, B.: Backward cocycles and attractors of stochastic differential equations. International seminar on applied mathematics -- nonlinear dynamics: attractor approximation and global behavior, 185-192 (1992)
[44] Schmalfuss, B.: Attractors for non-autonomous dynamical systems. Proc. equadiff. ’99, Berlin, 684-689 (2000) · Zbl 0971.37038
[45] Sell, G.; You, Y.: Dynamics of evolutionary equations. (2002) · Zbl 1254.37002
[46] Song, H.; Wu, H.: Pullback attractors of nonautonomous reaction -- diffusion equations. J. math. Anal. appl. 325, 1200-1215 (2007) · Zbl 1104.37013
[47] Temam, R.: Infinite dimensional dynamical systems in mechanics and physics. (1997) · Zbl 0871.35001
[48] Wang, Y.; Li, D.; Kloeden, P. E.: On the asymptotical behavior of nonautonomous dynamical systems. Nonlinear anal. 59, 35-53 (2004) · Zbl 1134.34319
[49] Wang, Y.; Zhong, C.; Zhou, S.: Pullback attractors of nonautonomous dynamical systems. Discrete contin. Dyn. syst. 16, 587-614 (2006) · Zbl 1179.37105
[50] Zhang, Y.; Zhong, C.: Existence of global attractors for a nonlinear wave equation. Appl. math. Lett. 18, 77-84 (2005) · Zbl 1081.37050
[51] Zhao, C.; Li, Y.: H2-compact attractor for a non-Newtonian system in two-dimensional unbounded domains. Nonlinear anal. 7, 1091-1103 (2004) · Zbl 1073.35044
[52] Zhao, C.; Li, Y.: A note on the asymptotic smoothing effect of solutions to a non-Newtonian system in 2-D unbounded domains. Nonlinear anal. 3, 475-483 (2005) · Zbl 1058.35047
[53] Zhao, C.; Zhou, S.; Liao, X.: Uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid with locally uniform integrable external forces. J. math. Phys. 47, 052701-052713 (2006) · Zbl 1111.35047
[54] Zhao, C.; Zhou, S.: L2-compact uniform attractors for a nonautonomous incompressible non-Newtonian fluid with locally uniformly integrable external forces in distribution space. J. math. Phys. 48, 032702-1-032702-12 (2007) · Zbl 1137.37332
[55] Zhao, C.; Zhou, S.; Li, Y.: Trajectory attractor and global attractor for a two-dimensional incompressible non-Newtonian fluid. J. math. Anal. appl. 325, 1350-1362 (2007) · Zbl 1112.35032