Hsu, Tsing-San Multiple solutions for semilinear elliptic equations in unbounded cylinder domains. (English) Zbl 1152.35371 Proc. R. Soc. Edinb., Sect. A, Math. 134, No. 4, 719-731 (2004). Summary: In this paper, we show that if \(b(x) \geq b^\infty > 0\) in \(\Omega^-\) and there exist positive constants \(C, \delta, R_0\) such that \(b(x) \geq b^\infty+C\,\exp(-\delta| z|)\) for \(| z| \geq R_0\) uniformly for \(y\in\overline\omega\) where \(x = (y, z)\in\mathbb R^N\) with \(y \in\mathbb R^m\), \(z\in\mathbb R^n\), \(N = m+n\geq 3\), \(m\geq 2\), \(n\geq 1\), \(1 < p < (N+2)/(N-2)\), \(\omega \subseteq\mathbb R^m\) a bounded \(C^{1,1}\) domain and \(\Omega = \omega \times \mathbb R^n\), then the Dirichlet problem \(-\Delta u+u = b(x)|u|^{p-1}u\) in \(\Omega\) has a solution that changes sign in \(\Omega\), in addition to a positive solution. Cited in 10 Documents MSC: 35J60 Nonlinear elliptic equations 35J20 Variational methods for second-order elliptic equations 35J25 Boundary value problems for second-order elliptic equations 47J30 Variational methods involving nonlinear operators Keywords:Dirichlet problem; semilinear elliptic equations; positive solution; sign changes PDF BibTeX XML Cite \textit{T.-S. Hsu}, Proc. R. Soc. Edinb., Sect. A, Math. 134, No. 4, 719--731 (2004; Zbl 1152.35371) Full Text: DOI