×

New periodic solutions for nonlinear evolution equations using Exp-function method. (English) Zbl 1152.35441

Summary: The Exp-function method is used to obtain generalized solitonary solutions and periodic solutions for nonlinear evolution equations arising in mathematical physics using symbolic computation. The method is straightforward and concise, and its applications are promising.

MSC:

35L70 Second-order nonlinear hyperbolic equations
35Q51 Soliton equations
35B10 Periodic solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] He, J.H., Int J non sci numer simul, 6, 2, 207-208, (2005)
[2] He, J.H., Int J non sci numer simul, 5, 1, 95-96, (2004)
[3] He, J.H., Chaos, solitons & fractals, 26, 695, (2005)
[4] He, J.H., Int J modern phys B, 20, 10, 1141-1199, (2006)
[5] Abdou, M.A., Chaos, solitons & fractals, 31, 1, 95-104, (2007)
[6] Abdou, M.A.; Soliman, A.A., Physica D, 211, 1, (2005)
[7] El-Wakil, S.A.; Abdou, M.A.; Elhanbaly, A., Phys lett A, 353, 40, (2006)
[8] He, J.H.; Wu, X.H., Chaos, solitons & fractals, 29, 108, (2006)
[9] El-Wakil SA, Abdou MA. Chaos, Solitons & Fractals, in press. doi:10.1016/j.chaos.2005.10.032.
[10] El-Wakil SA, Abdou MA. Chaos, Solitons & Fractals, in press. doi:10.1016/j.chaos.2005.10.072.
[11] Liu, J.; Yang, K., Chaos, solitons & fractals, 22, 111, (2004)
[12] Wang, M.; Li, X., Phys lett A, 343, 48, (2005)
[13] Yan, Z., Chaos, solitons & fractals, 15, 575, (2003)
[14] He, J.H.; Xu-Hong, Wu, Chaos, solitons & fractals, 30, 700-708, (2006)
[15] Wazwaz, A.M., Chaos, solitons & fractals, 25, 1, 55-65, (2005)
[16] Wang, M.; Li, Xiangzheng, Chaos, solitons & fractals, 27, 477, (2006)
[17] Fan, E.G., Phys lett A, 305, 383, (2002)
[18] Peng, Y.Z., Phys lett A, 314, 401, (2003)
[19] Dogan, K., Appl math comput, 149, 833, (2004)
[20] Peregine, D.H., J fluid mech, 25, 321, (1996)
[21] Peregine, D.H., J fluid mech, 27, 815, (1967)
[22] Benjamin, T.B.; Bona, J.L.; Mahony, J.J., Philos trans royal soc London, 227, 47, (1972)
[23] Bona, J.L.; Pritchard, W.G.; Scott, L.R., Lect appl math, 235-267, (1983)
[24] Wazwaz, A.M., Commun non sci numer simul, 11, 311, (2006)
[25] Wang, J.P., J non math appl, 9, 213, (2002)
[26] Goktas, U.; Heremaan, E., J symb comput, 24, 591, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.