×

New periodic solutions for nonlinear evolution equations using Exp-function method. (English) Zbl 1152.35441

Summary: The Exp-function method is used to obtain generalized solitonary solutions and periodic solutions for nonlinear evolution equations arising in mathematical physics using symbolic computation. The method is straightforward and concise, and its applications are promising.

MSC:

35L70 Second-order nonlinear hyperbolic equations
35Q51 Soliton equations
35B10 Periodic solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] He, J. H., Int J Non Sci Numer Simul, 6, 2, 207-208 (2005) · Zbl 1401.65085
[2] He, J. H., Int J Non Sci Numer Simul, 5, 1, 95-96 (2004)
[3] He, J. H., Chaos, Solitons & Fractals, 26, 695 (2005) · Zbl 1072.35502
[4] He, J. H., Int J Modern Phys B, 20, 10, 1141-1199 (2006) · Zbl 1102.34039
[5] Abdou, M. A., Chaos, Solitons & Fractals, 31, 1, 95-104 (2007) · Zbl 1138.35385
[6] Abdou, M. A.; Soliman, A. A., Physica D, 211, 1 (2005) · Zbl 1084.35539
[7] El-Wakil, S. A.; Abdou, M. A.; Elhanbaly, A., Phys Lett A, 353, 40 (2006)
[8] He, J. H.; Wu, X. H., Chaos, Solitons & Fractals, 29, 108 (2006) · Zbl 1147.35338
[9] El-Wakil SA, Abdou MA. Chaos, Solitons & Fractals, in press. doi:10.1016/j.chaos.2005.10.032; El-Wakil SA, Abdou MA. Chaos, Solitons & Fractals, in press. doi:10.1016/j.chaos.2005.10.032
[10] El-Wakil SA, Abdou MA. Chaos, Solitons & Fractals, in press. doi:10.1016/j.chaos.2005.10.072; El-Wakil SA, Abdou MA. Chaos, Solitons & Fractals, in press. doi:10.1016/j.chaos.2005.10.072
[11] Liu, J.; Yang, K., Chaos, Solitons & Fractals, 22, 111 (2004) · Zbl 1062.35105
[12] Wang, M.; Li, X., Phys Lett A, 343, 48 (2005) · Zbl 1181.35255
[13] Yan, Z., Chaos, Solitons & Fractals, 15, 575 (2003) · Zbl 1037.35074
[14] He, J. H.; Xu-Hong, Wu, Chaos, Solitons & Fractals, 30, 700-708 (2006) · Zbl 1141.35448
[15] Wazwaz, A. M., Chaos, Solitons & Fractals, 25, 1, 55-65 (2005) · Zbl 1070.35076
[16] Wang, M.; Li, Xiangzheng, Chaos, Solitons & Fractals, 27, 477 (2006) · Zbl 1088.35543
[17] Fan, E. G., Phys Lett A, 305, 383 (2002)
[18] Peng, Y. Z., Phys Lett A, 314, 401 (2003) · Zbl 1040.35102
[19] Dogan, K., Appl Math Comput, 149, 833 (2004)
[20] Peregine, D. H., J Fluid Mech, 25, 321 (1996)
[21] Peregine, D. H., J Fluid Mech, 27, 815 (1967) · Zbl 0163.21105
[22] Benjamin, T. B.; Bona, J. L.; Mahony, J. J., Philos Trans Royal Soc London, 227, 47 (1972)
[23] Bona, J. L.; Pritchard, W. G.; Scott, L. R., Lect Appl Math, 235-267 (1983)
[24] Wazwaz, A. M., Commun Non Sci Numer Simul, 11, 311 (2006) · Zbl 1078.35093
[25] Wang, J. P., J Non Math Appl, 9, 213 (2002) · Zbl 1362.37137
[26] Goktas, U.; Heremaan, E., J Symb Comput, 24, 591 (1997) · Zbl 0891.65129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.