zbMATH — the first resource for mathematics

Asymptotic behavior of the eigenvalues of the Schrödinger operator in thin closed tubes. (English. Russian original) Zbl 1152.35452
Math. Notes 83, No. 4, 463-477 (2008); translation from Mat. Zametki 83, No. 4, 503-519 (2008).
Summary: In the present paper, we obtain an asymptotic expansion of the eigenvalues of the Schrödinger operator with the magnetic field taken into account and with zero Dirichlet conditions in closed tubes, i.e., in closed curved cylinders with intrinsic torsion under uniform compression of the transverse cross-sections, with respect to a small parameter characterizing the tube’s transverse dimensions. We propose a method for reducing the eigenvalue problem to the problem of solving an implicit equation.

35P20 Asymptotic distributions of eigenvalues in context of PDEs
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
Full Text: DOI
[1] V. P. Maslov, ”An asymptotic expression for the eigenfunctions of the equation {\(\Delta\)}u + k 2 u = 0 with boundary conditions on equidistant curves and the scattering of electromagnetic waves in a waveguide,” Dokl. Akad. Nauk SSSR 123(3), 631–633 (1958) [Soviet Phys. Dokl. 3, 1132–1135 (1959)].
[2] V. P. Maslov, ”Mathematical aspects of integral optics,” Russ. J. Math. Phys. 8(1), 83–105 (2001). · Zbl 1082.78500
[3] V. P. Maslov and E. M. Vorob’ev, ”On single-mode open resonators,” Dokl. Akad. Nauk SSSR 179(3), 558–561 (1968).
[4] V. V. Belov, S. Yu. Dobrokhotov, and S. O. Sinitsyn, ”Asymptotic solutions of the Schrödinger equation in thin tubes,” Trudy Inst. Matem. Mekh. Ural Otd. RAS 9(1), 1–11 (2003). · Zbl 1126.35354
[5] V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, and T. Y. Tudorovskii, ”Semiclassical approximation and the canonical Maslov operator for nonrelativistic equations of quantum mechanics in nanotubes,” Dokl. Ross. Akad. Nauk 393(4), 460–464 (2003) [Russian Acad. Sci. Dokl. Math.].
[6] V. V. Belov, S. Yu. Dobrokhotov, and T. Ya. Tudorovskii, ”Quantum and classical dynamics of electron in thin curved tubes with spin and external electromagnetic fields taken into account,” Russ. J. Math. Phys. 11(1), 109–118 (2004). · Zbl 1186.81061
[7] V. V. Belov, S. Yu. Dobrokhotov, and T. Y. Tudorovskii, ”Asymptotic solutions of nonrelativistic equations of quantum mechanics in curved nanotubes. I. Reduction to spatially one-dimensional equations,” Teoret. Mat. Fiz. 141(2), 267–303 (2004) [Theoret. and Math. Phys. 141 (2), 1562–1592 (2004)]. · Zbl 1178.81080
[8] V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, and T. Y. Tudorovskii, ”Generalized adiabatic principle for describing the electron dynamics in curved nanotubes,” Uspekhi Fiz. Nauk 175(9), 1004–1010 (2005) [Soviet Phys. Uspekhi].
[9] P. Duclos and P. Exner, ”Curvature-induced bound states in quantum waveguides in two and three dimensions,” Rev. Math. Phys. 7(1), 73–102 (1995). · Zbl 0837.35037
[10] P. Exner and P. Šeba, ”Bound states in curved quantum waveguides,” J. Math. Phys. 30(11), 2574–2580 (1989). · Zbl 0693.46066
[11] P. Exner, ”Bound states in quantum waveguides of a slowly decaying curvature,” J. Math. Phys. 34(1), 23–28 (1993). · Zbl 0767.35051
[12] W. Bulla, F. Gesztesy, W. Renger, and B. Simon, ”Weakly coupled bound states in quantum waveguides,” Proc. Amer. Math. Soc. 125(2), 1487–1495 (1997). · Zbl 0868.35080
[13] P. Exner and S. A. Vugalter, ”Bounds states in a locally deformed waveguide: the critical value,” Lett. Math. Phys. 39(1), 59–68 (1997). · Zbl 0871.35067
[14] D. Borisov, P. Exner, R. Gadyl’shin, and D. Krejčiřík, ”Bound states in a weakly deformed strips and layers,” Ann. Henri Poincaré 2(3), 553–572 (2001). · Zbl 1043.35046
[15] V. V. Grushin, ”On the eigenvalues of finitely perturbed Laplace operators in infinite cylindrical domains,” Mat. Zametki 75(3), 360–371 (2004) [Math. Notes 75 (3–4), 331–340 (2004)]. · Zbl 1111.35022
[16] V. V. Grushin, ”Asymptotic behavior of the eigenvalues of the Schrödinger operator with transversal potential in a weakly curved infinite cylinder,” Mat. Zametki 77(5), 656–664 (2005) [Math. Notes 77 (5–6), 606–613 (2005)]. · Zbl 1082.35113
[17] V. V. Grushin, ”Asymptotic behavior of the eigenvalues of the Laplace operator in infinite cylinders perturbed by transverse extensions,” Mat. Zametki 81(3), 328–334 (2007) [Math. Notes 81 (3–4), 291–296 (2007)]. · Zbl 1136.35057
[18] V. V. Grushin, ”Asymptotic behavior of the eigenvalues of the Laplace operator in thin infinite tubes,” Mat. Zametki (in press). · Zbl 1181.35150
[19] R. R. Gadyl’shin, ”On local perturbations of quantum waveguides,” Teoret. Mat. Fiz. 145(3), 358–371 (2005) [Theoret. and Math. Phys. 145 (3), 1678–1690 (2005)].
[20] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, in Travaux et recherches mathématiques, Vol. 18 (Dunod, Paris, 1968; Mir, Moscow, 1971). · Zbl 0212.43801
[21] L. Hörmander, Linear Partial Differential Operators, in Die Grundlehren der mathematischen Wissenschaften, Vol. 116 (Springer-Verlag, Berlin, 1963; Mir, Moscow, 1965). · Zbl 0108.09301
[22] L. I. Magarill and M. V. Entin, ”Electrons in curvilinear quantum wire,” Zh. Éxper. Teoret. Fiz. 123(4), 867–876 (2003).
[23] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV: Analysis of Operators (Academic Press, New York, 1978; Mir, Moscow, 1982). · Zbl 0401.47001
[24] M. S. Agranovich and M. I. Vishik, ”Elliptic problems with a parameter and parabolic of general type,” Uspekhi Mat. Nauk 19(3), 53–161 (1964). · Zbl 0137.29602
[25] V. V. Grushin, ”On a class of elliptic pseudodifferential operators degenerate on a submanifold,” Mat. Sb. 84(2), 163–195 (1971) [Math. USSR-Sb. 13, 155–185 (1971)]. · Zbl 0238.47038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.