Assas, Laila M. B. Variational iteration method for solving coupled-KdV equations. (English) Zbl 1152.35466 Chaos Solitons Fractals 38, No. 4, 1225-1228 (2008). Summary: In this paper, the He’s variational iteration method is applied to solve the non-linear coupled-KdV equations. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converge to the exact solution of the coupled-KdV equations. This procedure is a powerful tool for solving coupled-KdV equations. Cited in 14 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems PDF BibTeX XML Cite \textit{L. M. B. Assas}, Chaos Solitons Fractals 38, No. 4, 1225--1228 (2008; Zbl 1152.35466) Full Text: DOI References: [1] Caom, D. B.; Yan, J. R.; Zang, Y., Exact solutions for a new coupled MKdV equations and a coupled KdV equations, Phys Lett A, 297, 68-74 (2002) · Zbl 0994.35104 [2] Das, G.; Sarma, J., Response to comment on ’A new mathematical approach for finding the solitary waves in dusty plasma’, Phys Plasmas, 6, 4394-4397 (1999) [3] Gao, Y. T.; Tian, B., Ion-acoustic shocks in space and laboratory dusty plasmas: Two-dimensional and non-traveling-wave observable effects, Phys Plasmas, 8, 3146-3149 (2001) [4] Ganji, D. D.; Rafei, M., Solitary wave solutions for a generalized Hirota-Satsuma coupled-KdV equation by homotopy perturbation method, Phys Lett A, 356, 131-137 (2006) · Zbl 1160.35517 [6] Hirota, R.; Satsuma, J., Solition solutions of a coupled Korteweg-de Vries equation, Phys Lett A, 85, 407-408 (1981) [7] He, J. H., Approximate analytical solution for seepage flow with fractional derivati in porous media, Comput Methods Appl Mech Eng, 167, 69-73 (1998) [8] Hong, H.; Lee, H., Korteweg-de Vries equation of ion acoustic surface waves, Phys Plasmas, 6, 3422-3424 (1999) [9] He, J. H., Variational iteration method: a king of nonlinear analytical techniqe: some examples, Internat Nonlinear Mech, 344, 699-708 (1999) [10] He, J. H., Approximate analytical methods in science and engineering (2002), Henan Science and Technology press: Henan Science and Technology press zheng zhou, in Chinese [11] He, J. H., Generalized variational principles in fluids (2003), Science and Culture Publishing House of China: Science and Culture Publishing House of China Hongkong, in Chinese · Zbl 1054.76001 [12] He, J. H.; Wu, X. H., Construction of solitary solution and compacton-like solution by variational iteration method, Chaos, Solutions & Fractals, 29, 1, 108-113 (2006) · Zbl 1147.35338 [13] He, J. H., Some asymptotic methods for strongly nonlinear equations, Internat J Mod Phys B, 20, 10, 1141-1199 (2006) · Zbl 1102.34039 [14] Osborne, A., The inverse scattering transform: Tools for the nonlinear fourier analysis and filtering of ocean surface waves, Chaos, Solitons & Fractals, 5, 2623-2637 (1995) · Zbl 1080.86502 [15] Ostrovsky, L.; Stepanyants, Yu. A., Do interal solutions exist in the ocean?, Rev Geophys, 27, 293-310 (1989) [16] Sweilam, N. H.; Khader, M. M., Variational iteration method for one dimensional nonlinear thermoelasticity, Chaos, Solitons & Fractals, 32, 145-149 (2007) · Zbl 1131.74018 [17] Zayed, E. M.E.; Zedan, H. A.; Gepreel, K. A., On the solitary wave solutions for non-linear Hirota-Satsuma coupled-KdV of equations, Chaos, Solitons & Fractals, 22, 285-303 (2004) · Zbl 1069.35080 [18] Zhang, J. L.; Wang, M. L.; Feng, Z. D., The improved F-expansion method and its applications, Phys Lett A, 350, 103-109 (2006) · Zbl 1195.65211 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.