Colliander, James E.; Keel, Markus; Staffilani, Gigliola; Takaoka, Hideo; Tao, Terence C. Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation. (English) Zbl 1152.35491 Math. Res. Lett. 9, No. 5-6, 659-682 (2002). Summary: We prove an “almost conservation law” to obtain global-in-time well-posedness for the cubic, defocussing nonlinear Schrödinger equation in \(H^s(\mathbb{R}^n)\) when \(n = 2, 3\) and \(s > 4/7, 5/6\), respectively. Cited in 6 ReviewsCited in 77 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 35L65 Hyperbolic conservation laws PDF BibTeX XML Cite \textit{J. E. Colliander} et al., Math. Res. Lett. 9, No. 5--6, 659--682 (2002; Zbl 1152.35491) Full Text: DOI arXiv