zbMATH — the first resource for mathematics

Well-posedness results for a model of damage in thermoviscoelastic materials. (English) Zbl 1152.35505
Summary: This paper deals with a phase transitions model describing the evolution of damage in thermoviscoelastic materials. The resulting system is highly non-linear, mainly due to the presence of quadratic dissipative terms and non-smooth constraints on the variables. Existence and uniqueness of a solution are proved, as well as regularity results, on a suitable finite time interval.

35Q72 Other PDE from mechanics (MSC2000)
74R20 Anelastic fracture and damage
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI EuDML
[1] Baiocchi, C., Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert, Ann. mat. pura appl. (IV), 76, 233-304, (1967) · Zbl 0153.17202
[2] Barbu, V., Nonlinear semigroups and differential equations in Banach spaces, (1976), Noordhoff Leyden
[3] Bonetti, E.; Bonfanti, G., Existence and uniqueness of the solution to a 3D thermoviscoelastic system, Electron. J. differential equations, 50, 1-15, (2003) · Zbl 1034.74022
[4] Bonetti, E.; Schimperna, G., Local existence to frémond’s model for damaging in elastic materials, Contin. mech. thermodyn., 16, 319-335, (2004) · Zbl 1066.74048
[5] Bonetti, E.; Schimperna, G.; Segatti, A., On a doubly nonlinear model for the evolution of damaging in viscoelastic materials, J. differential equations, 218, 91-116, (2005) · Zbl 1078.74048
[6] Bonfanti, G.; Frémond, M.; Luterotti, F., Global solution to a nonlinear system for irreversible phase changes, Adv. math. sci. appl., 10, 1-24, (2000) · Zbl 0956.35122
[7] Bonfanti, G.; Frémond, M.; Luterotti, F., Existence and uniqueness results to a phase transition model based on microscopic accelerations and movements, Nonlinear anal. real world appl., 5, 123-140, (2004) · Zbl 1092.80006
[8] Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans LES espaces de Hilbert, North-holland math. studies, vol. 5, (1973), North-Holland Amsterdam · Zbl 0252.47055
[9] Dafermos, C.M., Global smooth solutions to the initial boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. math. anal., 13, 397-408, (1982) · Zbl 0489.73124
[10] Francfort, G.A.; Suquet, P., Homogenization and mechanical dissipation in thermoviscoelasticity, Arch. ration. mech. anal., 96, 265-293, (1986) · Zbl 0621.73044
[11] Frémond, M., Non-smooth thermomechanics, (2001), Springer-Verlag Berlin · Zbl 0990.80001
[12] Frémond, M.; Kenmochi, N., Damage problems for viscous locking materials, Adv. math. sci. appl., 16, 697-716, (2006) · Zbl 1158.74310
[13] Frémond, M.; Kuttler, K.L.; Nedjar, B.; Shillor, M., One dimensional models of damage, Adv. math. sci. appl., 8, 541-570, (1998) · Zbl 0915.73041
[14] Lions, J.L., Quelques Méthodes de Résolution des problèmes aux limites non linéaires, (1969), Dunod, Gauthier-Villars Paris · Zbl 0189.40603
[15] Luterotti, F.; Schimperna, G.; Stefanelli, U., Global solution to a phase field model with irreversible and constrained phase evolution, Quart. appl. math., 60, 301-316, (2002) · Zbl 1032.35109
[16] Nirenberg, L., On elliptic partial differential equations, Ann. scuola norm. sup. Pisa (3), 13, 115-162, (1959) · Zbl 0088.07601
[17] Sassetti, M.; Tarsia, A., Su un’equazione non lineare Della corda vibrante, Ann. mat. pura appl., 161, 1-42, (1992)
[18] Schimperna, G.; Stefanelli, U., Positivity of the temperature for phase transitions with micro-movements, Nonlinear anal. real world appl., 8, 257-266, (2007) · Zbl 1116.80015
[19] Simon, J., Compact sets in the space \(L^p(0, T; B)\), Ann. mat. pura appl. (4), 146, 65-96, (1987) · Zbl 0629.46031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.