zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case. (English) Zbl 1152.35511
Summary: We establish the global attractivity of the positive steady state of the diffusive Nicholson equation with homogeneous Neumann boundary value under a condition that makes the equation a non-monotone dynamical system. To achieve this, we develop a novel method: combining a dynamical systems argument with maximum principle and some subtle inequalities.

35R10Partial functional-differential equations
35B35Stability of solutions of PDE
35B40Asymptotic behavior of solutions of PDE
35B41Attractors (PDE)
Full Text: DOI
[1] Cooke, K.; Den Driessche, P. Van; Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models, J. math. Biol. 39, 332-352 (1999) · Zbl 0945.92016 · doi:10.1007/s002850050194
[2] Faria, T.: Asymptotic stability for delayed logistic type equations, Math. comput. Modelling 43, 433-445 (2006) · Zbl 1145.34043 · doi:10.1016/j.mcm.2005.11.006
[3] Fitzgibbon, W. E.: Semilinear functional differential equations in Banach space, J. differential equations 29, 1-14 (1978) · Zbl 0392.34041 · doi:10.1016/0022-0396(78)90037-2
[4] Gourley, S. A.: Traveling fronts in the diffusive Nicholson’s blowflies equation with distributed delays, Math. comput. Modelling 32, 843-853 (2000) · Zbl 0969.35133 · doi:10.1016/S0895-7177(00)00175-8
[5] Gourley, S. A.; Ruan, S.: Dynamics of the diffusive Nicholson’s blowflies equation with distributed delay, Proc. roy. Soc. Edinburgh sect. A 130, 1275-1291 (2000) · Zbl 0973.34064 · doi:10.1017/S0308210500000688
[6] Gurney, W. S. C.; Blythe, S. P.; Nisbet, R. M.: Nicholson’s blowflies revisited, Nature 287, 17-21 (1980)
[7] Györi, I.; Trofimchuk, S.: Global attractivity in $x^{\prime}(t)= - \delta x(t)+pf(x(t - \tau ))$, Dynam. systems appl. 8, 197-210 (1999) · Zbl 0965.34064
[8] Hale, J. K.: Asymptotic behavior of dissipative systems, (1988) · Zbl 0642.58013
[9] Hale, J. K.; Lunel, S. M. Verduyn: Introduction to functional-differential equations, (1993) · Zbl 0787.34002
[10] Karakostas, G.; Philos, Ch.G.; Sficas, Y. C.: Stable steady state of some population models, J. dynam. Differential equations 4, 161-190 (1992) · Zbl 0744.34071 · doi:10.1007/BF01048159
[11] Kuang, Y.: Global attractivity and periodic solutions in delay-differential equations related to models in physiology and population biology, Japan J. Indust. appl. Math. 9, 205-238 (1992) · Zbl 0758.34065 · doi:10.1007/BF03167566
[12] Kulenovic, N. M. R.S.; Ladas, G.: Linearized oscillations in population dynamics, Bull. math. Biol. 49, 615-627 (1987) · Zbl 0634.92013 · doi:10.1007/BF02460139
[13] Liang, D.; So, J. W. -H.; Zhang, F.; Zou, X.: Population dynamic models with nonlocal delay on bounded fields and their numeric computations, Differential equations dynam. Systems 11, 117-139 (2003) · Zbl 1231.35287
[14] Liang, D.; Wu, J.: Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects, J. nonlinear sci. 13, 289-310 (2003) · Zbl 1017.92024 · doi:10.1007/s00332-003-0524-6
[15] Liang, D.; Wu, J.; Zhang, F.: Modelling population growth with delayed nonlocal reaction in 2-dimensions, Math. biosci. Eng. 2, 111-132 (2005) · Zbl 1061.92048
[16] Martin, R.; Smith, H. L.: Abstract functional differential equations and reaction -- diffusion systems, Trans. amer. Math. soc. 321, 1-44 (1990) · Zbl 0722.35046 · doi:10.2307/2001590
[17] Martin, R.; Smith, H. L.: Reaction -- diffusion systems with time delay: monotonicity, invariance, comparison and convergence, J. reine angew. Math. 413, 1-35 (1991) · Zbl 0709.35059 · crelle:GDZPPN002208148
[18] Mei, M.; So, J. W. -H.; Li, M. Y.; Shen, S.: Asymptotic stability of travelling waves for Nicholson’s blowflies equation with diffusion, Proc. roy. Soc. Edinburgh sect. A 134, 579-594 (2004) · Zbl 1059.34019 · doi:10.1017/S0308210500003358
[19] Nicholson, A. J.: An outline of the dynamics of animal populations, Aust. J. Zool. 2, 9-65 (1954)
[20] Protter, M. H.; Weinberger, H. F.: Maximum principles in differential equations, (1984) · Zbl 0549.35002
[21] Smith, H. L.: Monotone dynamical systems, Math. surveys monogr. (1995) · Zbl 0821.34003
[22] So, J. W. -H.; Yang, Y.: Dirichlet problem for the diffusive Nicholson’s blowflies equation, J. differential equations 150, 317-348 (1998) · Zbl 0923.35195 · doi:10.1006/jdeq.1998.3489
[23] So, J. W. -H.; Yu, J. S.: Global attractivity and uniform persistence in Nicholson’s blowflies, Differential equations dynam. Systems 2, 11-18 (1994) · Zbl 0869.34056
[24] So, J. W. -H.; Zou, X.: Traveling waves for the diffusive Nicholson’s blowflies equation, Appl. math. Comput. 122, 385-392 (2001) · Zbl 1027.35051 · doi:10.1016/S0096-3003(00)00055-2
[25] So, J. W. -H.; Wu, J.; Zou, X.: A reaction diffusion model for a single species with age structure, I. Traveling wave fronts on unbounded domains, Proc. R. Soc. lond. Ser. A 457, 1841-1854 (2001) · Zbl 0999.92029 · doi:10.1098/rspa.2001.0789
[26] Travis, C. C.; Webb, F. F.: Existence and stability for partial functional differential equations, Trans. amer. Math. soc. 200, 395-418 (1974) · Zbl 0299.35085 · doi:10.2307/1997265
[27] Wu, J.: Theory and applications of partial functional differential equations, Appl. math. Sci. 119 (1996) · Zbl 0870.35116
[28] Y. Yang, J.W.-H. So, Dynamics for the diffusive Nicholson blowflies equation, in: Proceedings of the International Conference on Dynamical Systems and Differential Equations, held in Springfield, Missouri, USA, May 29 -- June 1, 1996