zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Traveling waves in discrete periodic media for bistable dynamics. (English) Zbl 1152.37033
The main purpose of this paper is to introduce a general framework for the study of traveling waves in discrete periodic media. It is concerned with the existence, uniqueness, and global stability of traveling waves in discrete periodic media for an infinite system of ordinary differential equations $$ \dot u_i=\sum_ka_{i,j}u_{i+k}+f_i(u_i),\qquad t>0,\,i\in{\mathbb Z} $$ exhibiting bistable dynamics. It is assumed that $a_{i,k},f_i$ are periodic in $i$ and that ordered steady states exist. Moreover, the coefficients $a_{i,k}$ are supposed to fulfill a (discrete) ellipticity condition, a non-decoupledness condition and that one has a finite range interaction in the sense that $a_{i,k}$ vanishes for large absolute values of $k$. The main tools used to prove the uniqueness and asymptotic stability of traveling waves are the comparison principle, spectrum analysis based on the Krein-Rutman theorem, and constructions of super/subsolutions. To prove the existence of traveling waves, the system is converted to an integral equation which is common in the study of monostable dynamics but quite rare in the study of bistable dynamics.

37L60Lattice dynamics (infinite-dimensional dissipative systems)
35K55Nonlinear parabolic equations
37L15Stability problems of infinite-dimensional dissipative systems
35K15Second order parabolic equations, initial value problems
35B10Periodic solutions of PDE
Full Text: DOI
[1] Alikakos N., Bates P.W., Chen X. (1999) Periodic traveling waves and locating oscillating patterns in multidimensional domains. Trans. Am. Math. Soc. 351:2777--2805 · Zbl 0929.35067 · doi:10.1090/S0002-9947-99-02134-0
[2] Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion and nerve propagation. Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, Vol. 446, pp. 5--49. Springer, New York, 1975 · Zbl 0325.35050
[3] Aronson D.G., Weinberger H.F. (1978) Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30: 33--76 · Zbl 0407.92014 · doi:10.1016/0001-8708(78)90130-5
[4] Bates P.W., Chen X. Chmaj A. (2003) Traveling waves of bistable dynamics on a lattice. SIAM J. Math. Anal. 35:520--546 · Zbl 1050.37041 · doi:10.1137/S0036141000374002
[5] Berestycki H., Hamel F. (2002) Front propagation in periodic excitable media. Comm. Pure Appl. Math. 55: 949--1032 · Zbl 1024.37054 · doi:10.1002/cpa.3022
[6] Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I-Periodic framework. J. Eur. Math. Soc.(2007, to appear) · Zbl 1142.35464
[7] Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: I-Influence of periodic heterogeneous environment on species persistence (2007, preprint) · Zbl 1066.92047
[8] Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: II-Biological invasions and pulsating travelling fronts (2007, preprint) · Zbl 1083.92036
[9] Bramson, M.: Convergence of solutions of the Kolmogorov equation to traveling waves. Mem. Am. Math. Soc. 44 (1983) · Zbl 0517.60083
[10] Chen X. (1997) Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2: 125--160 · Zbl 1023.35513
[11] Chen X., Fu S.-C., Guo J.-S. (2006) Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J. Math. Anal. 38: 233--258 · Zbl 1117.34060 · doi:10.1137/050627824
[12] Chen X., Guo J.-S. (2002) Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations. J. Differ. Equ. 184: 549--569 · Zbl 1010.39004 · doi:10.1006/jdeq.2001.4153
[13] Chen X., Guo J.-S. (2003) Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326: 123--146 · Zbl 1086.34011 · doi:10.1007/s00208-003-0414-0
[14] Chow S.-N., Mallet-Paret J., Shen W. (1995) Stability and bifurcation of traveling wave solution in coupled map lattices. Dyn. Syst. Appl. 4: 1--26
[15] Chow S.N., Mallet-Paret J., Shen W. (1998) Travelling waves in lattice dynamical systems. J. Differ. Equ. 149: 249--291 · Zbl 0911.34050 · doi:10.1006/jdeq.1998.3478
[16] Ermentrout B., McLeod J.B. (1993) Existence and uniqueness of traveling waves for a neural network. Proc. R. Soc. Edinburgh 123A: 461--478 · Zbl 0797.35072
[17] Fife, P.C.: Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, Vol. 28. Springer, Heidelberg, 1979 · Zbl 0403.92004
[18] Fife P.C., McLeod J.B. (1977) The approach of solutions of non-linear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65: 335--361 · Zbl 0361.35035 · doi:10.1007/BF00250432
[19] Fife P.C., McLeod J.B. (1981) A phase plane discussion of convergence to traveling fronts for nonlinear diffusion. Arch. Ration. Mech. Anal. 75: 281--314 · Zbl 0459.35044 · doi:10.1007/BF00256381
[20] Fisher R.A. (1937) The advance of advantageous genes. Ann. Eugenics 7: 335--369 · Zbl 63.1111.04
[21] Freidlin M.I. (1985) Limit theorems for large deviations and reaction--diffusion equations. Ann. Probab. 13: 639--675 · Zbl 0576.60070 · doi:10.1214/aop/1176992901
[22] Gärtner J., Freidlin M.I. (1979) On the propagation of concentration waves in periodic and random media. Soviet Math. Dokl. 20: 1282--1286
[23] Guo J.-S., Hamel F. (2006) Front propagation for discrete periodic monostable equations. Math. Ann. 355: 489--525 · Zbl 1116.35063 · doi:10.1007/s00208-005-0729-0
[24] Hudson W., Zinner B. (1994) Existence of traveling waves for a generalized discrete Fisher’s equation. Commun. Appl. Nonlin. Anal. 1: 23--46 · Zbl 0859.34006
[25] Hudson, W., Zinner, B.: Existence of Travelling Waves for Reaction-Dissusion Equations of Fisher Type in Periodic Media. Boundary Value Problems for Functional-Differential Equations (Ed. Henderson J.) World Scientific, pp. 187--199, 1995 · Zbl 0846.35062
[26] Kametaka Y. (1976) On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type. Osaka J. Math. 13:11--66 · Zbl 0344.35050
[27] Kanel Ya.I. (1962) On the stabilization of Cauchy problem for equations arising in the theory of combustion. Mat. Sbornik 59: 245--288 · Zbl 0152.10302
[28] Kanel Ya.I. (1964) On the stabilization of solutions of the equations of the theory of combustion with initial data of compact support. Mat. Sbornik 65: 398--413
[29] Kolmogorov A.N., Petrovsky I.G., Piskunov N.S. (1937) Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un probléme biologique. Bull. Université d’État à Moscou, Ser. Int., Sect. A. 1: 1--25
[30] Krein, M.G., Rutman, M.A.: Linear operators meaving invariant a cone in a Banach space, Uspehi Mat. Nauk (N.S.) 3, 1(23), 3--95 (1948); also Russian Math. Surveys 26, 199--325 (1950) · Zbl 0030.12902
[31] Lewis B., von Elbe G. (1961) Combustion, flames and explosions of gases. Academic, Orlando
[32] Mallet-Paret J. (1999) The Fredholm alternative for functional-differential equations of mixed type. J. Dyn. Differ. Equ. 11: 1--47 · Zbl 0927.34049 · doi:10.1023/A:1021889401235
[33] Mallet-Paret J. (1999) The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Differ. Equ. 11: 49--127 · Zbl 0921.34046 · doi:10.1023/A:1021841618074
[34] Matano, H.: Travelling waves in spatially inhomogeneous diffusive media--the non-periodic case (2007, preprint)
[35] Moet H.J.K. (1979) A note on the asymptotic behavior of solutions of the KPP equation. SIAM J. Math. Anal. 10: 728--732 · Zbl 0409.35011 · doi:10.1137/0510067
[36] Nakamura, K.-I.: Effective speed of traveling wavefronts in periodic inhomogeneous media, Proceedings Workshop ”Nonlinear Partial Differential Equations and Related Topics”, Joint Research Center for Science and Technology of Ryukoku University, pp. 53--60, 1999
[37] Sattinger D.H. (1976) On the stability of waves of nonlinear parabolic systems. Adv. Math. 22: 312--355 · Zbl 0344.35051 · doi:10.1016/0001-8708(76)90098-0
[38] Shen W. (1999) Travelling waves in time almost periodic structures governed by bistable nonlinearities: I. Stability and uniqueness. J. Differ. Equ. 159: 1--54 · Zbl 0939.35016
[39] Shen W. (1999) Travelling waves in time almost periodic structures governed by bistable nonlinearities: II. Existence. J. Differ. Equ. 159: 55--101 · Zbl 0939.35015 · doi:10.1006/jdeq.1999.3652
[40] Shigesada N., Kawasaki K. (1997) Biological invasions: theory and practice. Oxford Series in Ecology and Evolution Oxford University Press, Oxford
[41] Shigesada N., Kawasaki K., Teramoto E. (1986) Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30: 143--160 · Zbl 0591.92026 · doi:10.1016/0040-5809(86)90029-8
[42] Shorrocks B., Swingland I.R. (1990) Living in a Patch Environment. Oxford University Press, New York
[43] Uchiyama K. (1978) The behavior of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ. 18: 453--508 · Zbl 0408.35053
[44] Weinberger H.F. (1982) Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13: 353--396 · Zbl 0529.92010 · doi:10.1137/0513028
[45] Weinberger H.F. (2002) On spreading speeds and traveling waves for growth and migration in periodic habitat. J. Math. Biol. 45: 511--548 · Zbl 1058.92036 · doi:10.1007/s00285-002-0169-3
[46] Williams F. (1983) Combustion Theory. Addison-Wesley, Reading · Zbl 0516.76104
[47] Wu J., Zou X. (1997) Asymptotic and periodic boundary values problems of mixed PDEs and wave solutions of lattice differential equations. J. Differ. Equ. 135: 315--357 · Zbl 0877.34046 · doi:10.1006/jdeq.1996.3232
[48] Xin X. (1991) Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity. J. Dyn. Differ. Equ. 3: 541--573 · Zbl 0769.35033 · doi:10.1007/BF01049099
[49] Xin X. (1992) Existence of planar flame fronts in convective-diffusive periodic media. Arch. Ration. Mech. Anal. 121: 205--233 · Zbl 0764.76074 · doi:10.1007/BF00410613
[50] Xin X. (1993) Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media. J. Stat. Phys. 73: 893--925 · Zbl 1102.35340 · doi:10.1007/BF01052815
[51] Xin J.X. (1994) Existence of multidimensional traveling waves in tranport of reactive solutes through periodic porous media. Arch. Ration. Mech. Anal. 128: 75--103 · Zbl 0819.76097 · doi:10.1007/BF00380794
[52] Xin J. (2000) Front propagation in heterogeneous media. SIAM Rev. 42: 161--230 · Zbl 0951.35060 · doi:10.1137/S0036144599364296
[53] Zinner B. (1991) Stability of traveling wavefronts for the discrete Nagumo equations. SIAM J. Math. Anal. 22: 1016--1020 · Zbl 0739.34060 · doi:10.1137/0522066
[54] Zinner B. (1992) Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differ. Equ. 96:1--27 · Zbl 0752.34007 · doi:10.1016/0022-0396(92)90142-A
[55] Zinner B., Harris G., Hudson W. (1993) Traveling wavefronts for the discrete Fisher’s equation. J. Differ. Equ. 105: 46--62 · Zbl 0778.34006 · doi:10.1006/jdeq.1993.1082