zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of complex chaotic systems in series expansion form. (English) Zbl 1152.37314
Summary: This paper studies the synchronization of complex chaotic systems in series expansion form by Lyapunov asymptotical stability theorem. A sufficient condition is given for the asymptotical stability of an error dynamics, and is applied to guiding the design of the secure communication. Finally, numerical results are studied for the Quantum-CNN oscillators synchronizing with unidirectional/bidirectional linear coupling to show the effectiveness of the proposed synchronization strategy.

MSC:
37D45Strange attractors, chaotic dynamics
93D15Stabilization of systems by feedback
WorldCat.org
Full Text: DOI
References:
[1] Pecora, L. -M.; Carroll, T. -L.: Synchronization in chaotic systems. Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[2] Carroll, T. -L.; Pecora, L. -M.: Synchronization chaotic circuits. IEEE trans circ syst 38, No. 4, 453-456 (1991)
[3] Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applications. (1998) · Zbl 0908.93005
[4] Curren, P. -F.; Suykens, J. -A.-K.; Chua, L. -O.: Absolute stability theory and master -- slave synchronization. Int J bifurcat chaos 7, No. 12, 2891-2896 (1997) · Zbl 0911.93044
[5] Suykens, J. -A.-K.; Yang, T.; Chua, L. -O.: Impulsive synchronization of chaotic Lur’e systems by measurement feedback. Int J bifurcat chaos 8, No. 6, 1371-1381 (1998) · Zbl 0936.93027
[6] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D. -L.; Zhou, C. -S.: The synchronization of chaotic systems. Phys rep 366, 1-101 (2002) · Zbl 0995.37022
[7] Tsay, S.; Huang, C.; Qiu, D.; Chen, W.: Implementation of bidirectional chaotic communication systems based on Lorenz circuits. Chaos, solitons & fractals 20, No. 3, 567-579 (2004) · Zbl 1050.93035
[8] Suykens, J. -A.-K.; Vandewalle, J.: Master -- slave synchronization of Lur’e systems. Int J bifurcat chaos 7, No. 3, 665-669 (1997) · Zbl 0925.93342
[9] Jiang, G. -P.; Tang, W.: A global synchronization criterion for coupled chaotic systems via unidirectional linear error feedback approach. Int J bifurcat chaos 12, No. 10, 2239-2253 (2002) · Zbl 1052.34053
[10] Jiang, G.; Tang, W.; Chen, G.: A simple global synchronization criterion for coupled chaotic systems. Chaos, solitons & fractals 15, No. 5, 925-935 (2003) · Zbl 1065.70015
[11] Luigi, Fortuna; Domenico, Porto: Quantum-CNN to generate nanoscale chaotic oscillator. Int J bifurcat chaos 14, No. 3, 1085-1089 (2004) · Zbl 1086.37503
[12] Ge Z-M, Yang C-H. Generalized synchronization of quantum-CNN chaotic oscillator with different order system. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.04.108.
[13] Lu, J. -H.; Zhou, T. -S.; Zhang, S. -C.: Chaos synchronization between linearly coupled chaotic systems. Chaos, solitons & fractals 14, 529-541 (2002) · Zbl 1067.37043
[14] Liao, X. -X.; Chen, G.: Chaos synchronization of general Lur’e systems via time-delay feedback control. Int J bifurcat chaos 13, No. 1, 207-213 (2003) · Zbl 1129.93509
[15] Lorenz, E. -N.: Deterministic non-periodic flows. J atmos sci 20, 130-141 (1963)
[16] Chen, S.; Lu, J.: Synchronization of uncertain unified chaotic system via adaptive control. Chaos, solitons & fractals 14, No. 4, 643-647 (2002) · Zbl 1005.93020
[17] Chen, S.; Zhang, Q.; Xie, J.; Wang, C.: A stable-manifold-based method for chaos control and synchronization. Chaos, solitons & fractals 20, No. 5, 947-954 (2004) · Zbl 1050.93032
[18] Liao, T.: Adaptive synchronization of two Lorenz systems. Chaos, solitons & fractals 9, No. 9, 1555-1561 (1998) · Zbl 1047.37502
[19] Bai, E.; Lonngren, K.: Synchronization of two Lorenz systems using active control. Chaos, solitons & fractals 8, No. 1, 51-58 (1997) · Zbl 1079.37515
[20] Bai, E.; Lonngren, K.: Sequential synchronization of two Lorenz systems using active control. Chaos, solitons & fractals 11, No. 7, 1041-1044 (2000) · Zbl 0985.37106
[21] Ge, Zheng-Ming; Cheng, Jui-Wen; Chen, Yen-Sheng: Chaos anticontrol and synchronization of three time scales brushless DC motor system. Chaos, solitons & fractals 22, 1165-1182 (2004) · Zbl 1060.93549
[22] Ge, Zheng-Ming; Lee, Ching-I.: Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay. Chaos, solitons & fractals 23, 1855-1864 (2004) · Zbl 1061.93502
[23] Ge, Z. -M.; Chang, C. -M.: Chaos synchronization and parameters identification of single time scale brushless DC motors. Chaos, solitons & fractals 20, 883-903 (2004) · Zbl 1071.34048
[24] Ge, Zheng-Ming; Chen, Chien-Cheng: Phase synchronization of coupled chaotic multiple time scales systems. Chaos, solitons & fractals 20, 639-647 (2004) · Zbl 1069.34056
[25] Ge, Zheng-Ming; Leu, Wei-Ying: Chaos synchronization and parameter identification for identical system. Chaos, solitons & fractals 21, 1231-1247 (2004) · Zbl 1060.93523
[26] Ge, Zheng-Ming; Leu, Wei-Ying: Anti-control of chaos of two-degrees-of-freedom louderspeaker system and chaos synchronization of different order systems. Chaos, solitons & fractals 20, 503-521 (2004) · Zbl 1048.37077
[27] Ge, Zheng-Ming; Chen, Yen-Sheng: Synchronization of unidirectional coupled chaotic systems via partial stability. Chaos, solitons & fractals 21, 101-111 (2004) · Zbl 1048.37027
[28] Jiang, G. -P.; Tang, K. -S.; Chen, G. -R.: A simple global synchronization criterion for coupled chaotic systems. Chaos, solitons & fractals 15, 925-935 (2003) · Zbl 1065.70015
[29] Liu, F.; Ren, Y.; Shan, X.; Qiu, Z.: A linear feedback synchronization theorem for a class of chaotic systems. Chaos, solitons & fractals 13, No. 4, 723-730 (2002) · Zbl 1032.34045
[30] Lü, J.; Zhou, T.; Zhang, S.: Chaos synchronization between linearly coupled chaotic systems. Chaos, solitons & fractals 14, No. 4, 529-541 (2002) · Zbl 1067.37043
[31] Krawiecki, A.; Sukiennicki, A.: Generalizations of the concept of marginal synchronization of chaos. Chaos, solitons & fractals 11, No. 9, 1445-1458 (2000) · Zbl 0982.37022
[32] Yang, X.; Chen, G.: Some observer-based criteria for discrete-time generalized chaos synchronization. Chaos, solitons & fractals 13, No. 6, 1303-1308 (2002) · Zbl 1006.93580
[33] Jiang, G.; Zheng, W.; Chen, G.: Global chaos synchronization with channel time-delay. Chaos, solitons & fractals 20, No. 2, 267-275 (2004) · Zbl 1045.34021
[34] Kyprianidis, I.; Stouboulos, I.: Chaotic synchronization of three coupled oscillators with ring connection. Chaos, solitons & fractals 17, 327-336 (2003) · Zbl 1036.94542
[35] Zhou, T.; Lu, J.; Chen, G.; Tang, Y.: Synchronization stability of three chaotic systems with linear coupling. Phys lett A 301, 231-240 (2002) · Zbl 0997.37015
[36] Yu, Yoongguang; Zhang, Suochun: Global synchronization of three coupled chaotic system with ring connection. Chaos, solitons & fractals 24, 1233-1242 (2005) · Zbl 1081.37020
[37] Khalil, H. K.: Nonlinear system. (2002)
[38] Smirnov, V. I.: A course of higher mathematics. 1 (1964) · Zbl 0121.25904