zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On chaos synchronization of a complex two coupled dynamos system. (English) Zbl 1152.37317
Summary: The main objective of this work is to investigate the chaotic behavior and chaos synchronization of a complex two coupled dynamos system subject to different initial conditions. This system exhibits a chaotic attractor which is found numerically. The global synchronization and active control techniques are used in this investigation. The feedback gain matrix and Lyapunov function are calculated and used to show that the linear error dynamical system is asymptotically stable. The analytical results are tested numerically and excellent agreement is found.

MSC:
37D45Strange attractors, chaotic dynamics
WorldCat.org
Full Text: DOI
References:
[1] Lakshmanan, M.; Murali, K.: Chaos in nonlinear oscillators: controlling and synchronization. (1996) · Zbl 0868.58058
[2] Blasius, B.; Huppert, A.; Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological system. Nature 399, 354-359 (1999)
[3] Wang, C. C.; Su, J. P.: A new adaptive structure control for chaotic synchronization and secure communication. Chaos, solitons & fractals 20, 967-977 (2004) · Zbl 1050.93036
[4] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Phys rev lett 64, No. 8, 821-824 (1990) · Zbl 0938.37019
[5] Pecora, L. M.; Carroll, T. L.: Synchronizing chaotic circuits. IEEE tans cir sys 38, 453-456 (1991) · Zbl 1058.37538
[6] Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applications. (1998) · Zbl 0908.93005
[7] Dai, E. W.; Lonngren, K. E.: Sequential synchronization of two Lorenz systems using active control. Chaos, solitons & fractals 11, 1041-1044 (2000) · Zbl 0985.37106
[8] Wu, X.; Lu, J.: Parameter identification and backstepping control of uncertain Lü system. Chaos, solitons & fractals 18, 721-729 (2003) · Zbl 1068.93019
[9] Agiza, H. N.: Controlling chaos for the dynamical system of coupled dynamos. Chaos, solitons & fractals 13, 341-352 (2002) · Zbl 0994.37047
[10] Agiza, H. N.: Chaos synchronization of two coupled dynamos systems with unknown system parameters. Int J modern phys C 15, No. 6, 873-883 (2004) · Zbl 1082.34041
[11] Lei, Y.; Xu, W.; Shen, J.; Fang, T.: Global synchronization of two parametrically excited systems using active control. Chaos, solitons & fractals 28, 428-436 (2006) · Zbl 1084.37029
[12] Jayaram, A.; Tadi, M.: Synchronization of chaotic systems based on SDRE method. Chaos, soliton & fractals 28, 707-715 (2006) · Zbl 1121.37030
[13] Park, J. H.: Chaos synchronization of a chaotic system via nonlinear control. Chaos, solitons & fractals 25, 579-584 (2005) · Zbl 1092.37514
[14] Wang, Y.; Guan, Z. H.; Wang, H. O.: Feedback an adaptive control for the synchronization of Chen system via a single variable. Phys lett A 312, 34-40 (2003) · Zbl 1024.37053
[15] Yang, X. S.; Chen, G.: Some observer-based criteria for discrete-time generalized chaos synchronization. Chaos, solitons & fractals 13, 1303-1308 (2002) · Zbl 1006.93580
[16] Chen, M.; Han, Z.: Controlling and synchronizing feedback control. Chaos, solitons & fractals 17, 709-716 (2003) · Zbl 1044.93026
[17] Huang, L.; Feng, R.; Wang, M.: Synchronization of chaotic systems via nonlinear control. Phys lett. A 320, 271-275 (2004) · Zbl 1065.93028
[18] Gibbon, J. D.; Mcguinness, M. J.: The real and complex Lorenz equations in rotating fluids and lasers. Physica 5, 108-122 (1982) · Zbl 1194.76280
[19] Vladinirov, A. G.; Tornov, V. Y.; Derbov, V. L.: The complex Lorenz model: geometric structure, homoclinic bifurcation and one-dimensional map. Int J bifurcat chaos 8, No. 4, 723-729 (1998) · Zbl 1109.37303
[20] Mahmoud, Gamal M.; Bountis, T.: The dynamics of system of complex nonlinear oscillators: a review. Int J bifurcat chaos 14, No. 11, 3821-3846 (2004) · Zbl 1091.34524
[21] Jiang, G. -P.; Tang, K. S.; Chen, G.: A simple global synchronization criterion for coupled chaotic systems. Chaos, solitons & fractals 15, 925-935 (2003) · Zbl 1065.70015
[22] Mahmoud GM, Aly SA, Al-Kashif MA. Basic properties and chaotic synchronization of complex Lorenz system, has been accepted for publication in IJMPC, 2006.
[23] Mahmoud GM, Bountis T, Mahmoud EE. Active control and global synchronization of complex Chen and Lü systems. Int J Bifurcat Chaos. Submitted for publication. · Zbl 1146.93372