zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos in the Newton-Leipnik system with fractional order. (English) Zbl 1152.37319
Summary: The dynamics of fractional-order systems has attracted increasing attention in recent years. In this paper, the dynamics of the Newton-Leipnik system with fractional order was studied numerically. The system displays many interesting dynamic behaviors, such as fixed points, periodic motions, chaotic motions, and transient chaos. It was found that chaos exists in the fractional-order system with order less than 3. In this study, the lowest order for this system to yield chaos is 2.82. A period-doubling route to chaos in the fractional-order system was also found.

37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[2] , Applications of fractional calculus in physics (2001)
[3] Bagley, R. L.; Calico, R. A.: Fractional order state equations for the control of viscoelastically damped structures, J guid control dyn 14, 304-311 (1991)
[4] Koeller, R. C.: Application of fractional calculus to the theory of viscoelasticity, J appl mech 51, 199 (1984) · Zbl 0544.73052 · doi:10.1115/1.3167616
[5] Koeller, R. C.: Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics, Acta mech 58, 251-264 (1986) · Zbl 0578.73040 · doi:10.1007/BF01176603
[6] Sun, H. H.; Abdelwahed, A. A.; Onaral, B.: Linear approximation for transfer function with a pole of fractional order, IEEE trans autom control 29, 441-444 (1984) · Zbl 0532.93025 · doi:10.1109/TAC.1984.1103551
[7] Ichise, M.; Nagayanagi, Y.; Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process, J electroanal chem 33, 253-265 (1971)
[8] Heaviside, O.: Electromagnetic theory, (1971) · Zbl 30.0801.03
[9] Laskin, N.: Fractional market dynamics, Physica A 287, 482-492 (2000)
[10] Kunsezov, D.; Bulagc, A.; Dang, G. D.: Quantum Lévy processes and fractional kinetics, Phys rev lett 82, 1136-1139 (1999)
[11] Hartley, T. T.; Lorenzo, C. F.: Dynamics and control of initialized fractional-order systems, Nonlinear dyn 29, 201-233 (2002) · Zbl 1021.93019 · doi:10.1023/A:1016534921583
[12] Hwang, C.; Leu, J. F.; Tsay, S. Y.: A note on time-domain simulation of feedback fraction-order systems, IEEE trans autom control 47, 625-631 (2002)
[13] Podlubny, I.; Petras, I.; Vinagre, B. M.; O’leary, P.; Dorcak, L.: Analogue realizations of fractional-order controllers, Nonlinear dyn 29, 281-286 (2002) · Zbl 1041.93022 · doi:10.1023/A:1016556604320
[14] Zaslavsky, G. M.: Chaos, fractional kinetics, and anomalous transport, Phys rep 371, 461-580 (2002) · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[15] Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K.: Chaos in a fractional order Chua’s system, IEEE trans CAS-I 42, 485-490 (1995)
[16] Arena P, Caponetto R, Fortuna L, Porto D. Chaos in a fractional order Duffing system. In: Proceedings of ECCTD. Budapest; 1997. p. 1259 -- 62.
[17] Ahmad, W.; El-Khazali, R.; El-Wakli, A.: Fractional-order wien-Bridge oscillator, Electron lett 37, 1110-1112 (2001)
[18] Ahmad, W. M.; Sprott, J. C.: Chaos in fractional-order autonomous nonlinear systems, Chaos, solitons & fractals 16, 339-351 (2003) · Zbl 1033.37019 · doi:10.1016/S0960-0779(02)00438-1
[19] Grigorenko, I.; Grigirenko, E.: Chaotic dynamics of the fractional Lorenz system, Phys rev lett 91, 034101 (2003)
[20] Arena, P.; Fortuna, L.; Porto, D.: Chaotic behavior in noninteger-order cellular neural networks, Phys rev E 61, 776-781 (2000)
[21] Li, C.; Chen, G.: Chaos and hyperchaos in fractional order Rössler equation, Physica A 341, 55-61 (2004)
[22] Sheu LJ, Chen HK, Chen JH, Tam LM. Chaos in a new system with a fractional order. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.10.073.
[23] Sheu LJ, Chen HK, Chen JH, Tam LM. Chaotic dynamics of the fractionally damped Duffing equation. Chaos, Solitons & Fractals; in press, doi:10.1016/j.chaos.2005.11.066. · Zbl 1129.37015 · doi:10.1016/j.chaos.2005.11.066
[24] Leipnik, R. B.; Newton, T. A.: Double strange attractors in rigid body motion, Phys lett A 86, 63-67 (1981)
[25] Wang, X.; Tian, L.: Bifurcation analysis and linear control of the Newton -- leipnik system, Chaos, solitons & fractals 27, 31-38 (2006) · Zbl 1091.93031 · doi:10.1016/j.chaos.2005.04.009
[26] Ge, Z. M.; Chen, H. K.; Chen, H. H.: The regular and chaotic motions of a symmetric heavy gyroscope with harmonic excitation, J sound vibr 198, 131-147 (1996) · Zbl 1235.70016
[27] Ge, Z. M.; Chen, H. K.: Stability and chaotic motions of a symmetric heavy gyroscope, Jpn J appl phys 35, 1954-1965 (1996)
[28] Tong, X.; Mrad, N.: Chaotic motion of a symmetric gyro subjected to a harmonic base excitation, Trans ASME J appl mech 68, 681-684 (2001) · Zbl 1110.74711 · doi:10.1115/1.1379036
[29] Chen, H. K.: Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping, J sound vibr 255, 719-740 (2002) · Zbl 1237.70094
[30] Chen, H. K.; Lin, T. N.: Synchronization of chaotic symmetric gyros by one-way coupling conditions, Imeche J mech eng sci 217, 331-340 (2003)
[31] Chen, H. K.; Lee, C. I.: Anti-control of chaos in rigid body motion, Chaos, solitons & fractals 21, 957-965 (2004) · Zbl 1046.70005 · doi:10.1016/j.chaos.2003.12.034
[32] Richter, H.: Controlling chaotic system with multiple strange attractors, Phys lett A 300, 182-188 (2002) · Zbl 0997.37012 · doi:10.1016/S0375-9601(02)00183-4
[33] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent -- II, Geophys J R astron soc 13, 529-539 (1967)
[34] Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order, Electron trans numer anal 5, 1-6 (1997) · Zbl 0890.65071 · emis:journals/ETNA/vol.5.1997/pp1-6.dir/pp1-6.html
[35] Diethelm, K.; Ford, N. J.: Analysis of fraction differential equations, J math anal appl 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[36] Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor -- corrector approach for the numerical solution of fractional differential equations, Nonlinear dyn 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[37] Diethelm, K.; Freed, A. D.: The fracpece subroutine for the numerical solution of differential equations of fractional order, Forschung und wissenschaftliches rechnen, 57-71 (1999)
[38] Li, C.; Peng, G.: Chaos in Chen’s system with a fractional order, Chaos, solitons & fractals 22, 443-450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013