Lee, Young-Su; Chung, Soon-Yeong Stability of an Euler-Lagrange-Rassias equation in the spaces of generalized functions. (English) Zbl 1152.39318 Appl. Math. Lett. 21, No. 7, 694-700 (2008). Summary: Making use of the fundamental solution of the heat equation we reformulate and prove the stability theorem of a special case of the Euler-Lagrange-Rassias functional equation in the spaces of tempered distributions and Fourier hyperfunctions. Cited in 14 Documents MSC: 39B52 Functional equations for functions with more general domains and/or ranges 39B82 Stability, separation, extension, and related topics for functional equations Keywords:quadratic functional equation; stability; distributions; heat kernel; Gauss transform PDF BibTeX XML Cite \textit{Y.-S. Lee} and \textit{S.-Y. Chung}, Appl. Math. Lett. 21, No. 7, 694--700 (2008; Zbl 1152.39318) Full Text: DOI References: [1] Bae, J.-H., On the stability of 3-dimensional quadratic functional equation, Bull. Korean Math. Soc., 37, 477-486 (2000) · Zbl 0967.39011 [2] Baker, J. A., Functional equations, tempered distributions and Fourier transforms, Trans. Amer. Math. Soc., 315, 57-68 (1989) · Zbl 0674.39010 [3] Bouikhalene, B.; Elqorachi, E., Ulam-Gavruta-Rassias stability of the Pexider functional equation, Internat. J. Appl. Math. Stat., 7, 27-39 (2007) [4] Chung, J., Stability of functional equations in the spaces of distributions and hyperfunctions, J. Math. Anal. Appl., 286, 177-186 (2003) · Zbl 1033.39025 [5] Chung, J., Generalized Pompeiu equation in distributions, Appl. Math. Lett., 19, 485-490 (2006) · Zbl 1090.39013 [6] Chung, J.; Chung, S.-Y.; Kim, D., The stability of Cauchy equations in the space of Schwartz distributions, J. Math. Anal. Appl., 295, 107-114 (2004) · Zbl 1053.39043 [7] Chung, S.-Y., Reformulation of some functional equations in the space of Gevrey distributions and regularity of solutions, Aequationes Math., 59, 108-123 (2000) · Zbl 0945.39013 [8] Gavruta, P., A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184, 431-436 (1994) · Zbl 0818.46043 [9] Gavruta, P., An answer to a question of John M. Rassias concerning the stability of Cauchy equation, Hadronic Math. Ser., 67-71 (1999) [10] Hyers, D. H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27, 222-224 (1941) · Zbl 0061.26403 [12] Park, C. G., Stability of an Euler-Lagrange-Rassias type additive mapping, Internat. J. Appl. Math. Stat., 7, 101-111 (2007) [13] Rassias, J. M., On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46, 126-130 (1982) · Zbl 0482.47033 [14] Rassias, J. M., On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., 108, 445-446 (1984) · Zbl 0599.47106 [15] Rassias, J. M., Solution of a problem of Ulam, J. Approx. Theory, 57, 268-273 (1989) · Zbl 0672.41027 [16] Rassias, J. M., On the stability of the Euler-Lagrange functional equation, Chinese J. Math., 20, 185-190 (1992) · Zbl 0753.39003 [17] Rassias, J. M., Solution of a stability problem of Ulam, Discuss. Math., 12, 95-103 (1992) · Zbl 0779.47005 [18] Rassias, J. M., Complete solution of the multi-dimensional problem of Ulam, Discuss. Math., 14, 101-107 (1994) · Zbl 0819.39012 [19] Rassias, J. M., On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci., 28, 231-235 (1994) · Zbl 0840.46024 [20] Rassias, J. M., On the stability of the general Euler-Lagrange functional equation, Demonstratio Math., 29, 755-766 (1996) · Zbl 0884.47040 [21] Rassias, J. M., Solution of the Ulam stability problem for Euler-Lagrange quadratic mappings, J. Math. Anal. Appl., 220, 613-639 (1998) · Zbl 0928.39014 [22] Rassias, J. M., On the stability of the multi-dimensional Euler-Lagrange functional equation, J. Indian Math. Soc., 66, 1-9 (1999) · Zbl 1141.39310 [23] Rassias, J. M., On some approximately quadratic mappings being exactly quadratic, J. Indian Math. Soc., 69, 155-160 (2002) · Zbl 1104.39300 [24] Ravi, K.; Arunkumar, M., On the Ulam-Gavruta-Rassias stability of the orthogonally Euler-Lagrange type functional equation, Internat. J. Appl. Math. Stat., 7, 143-156 (2007) [25] Sibaha, M. A.; Bouikhalene, B.; Elqorachi, E., Ulam-Gavruta-Rassias stability for a linear functional equation, Internat. J. Appl. Math. Stat., 7, 157-168 (2007) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.