zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Double sequence spaces characterized by lacunary sequences. (English) Zbl 1152.40303
Summary: {\it G. Das} and {\it B. K. Patel} [Indian J. Pure Appl. Math. 20, 64--74 (1989; Zbl 0726.40002)] considered known sequence spaces to define two new sequence spaces called lacunary almost convergent and lacunary strongly almost convergent sequence spaces, and proved two inclusion theorems with respect to those spaces. In this paper, we shall extend those spaces to two new double sequence spaces and prove multidimensional analogues of Das and Patel’s results.

40A05Convergence and divergence of series and sequences
Full Text: DOI
[1] Das, G.; Mishra, S.: Banach limits and lacunary strong almost convergent. J. orissa math. Soc. 2, No. 2, 61-70 (1983) · Zbl 0568.40001
[2] Das, G.; Patel, B. K.: Lacunary distribution of sequences. Indian J. Pure appl. Math. 26, No. 1, 64-74 (1989) · Zbl 0726.40002
[3] Freedman, A. R.; Sember, J. J.; Raphael, M.: Some Cesàro type summability spaces. Proc. London math. Soc. 37, 508-520 (1978) · Zbl 0424.40008
[4] Lorentz, G. G.: A contribution to the theory of divergent sequences. Acta math. 80, 167-190 (1948) · Zbl 0031.29501
[5] Moddox, I. J.: On strong almost convergent. Math. proc. Cambridge philos. Soc. 85, No. 2, 343-350 (1979)
[6] Mursaleen; Edely, O. H.: Statistical convergence of double sequences. J. math. Anal. appl. 288, No. 1, 223-231 (2003) · Zbl 1032.40001
[7] Mursaleen; Edely, O. H.: Almost convergence and a core theorem for double sequences. J. math. Anal. appl. 293, 532-540 (2004) · Zbl 1043.40003
[8] Patterson, R. F.: Analogues of some fundamental theorems of summability theory. Int. J. Math. math. Sci. 23, No. 1, 1-9 (2000) · Zbl 0954.40005
[9] Pringsheim, A.: Zur theorie der Zweifach unendlichen zahlenfolgen. Math. ann. 53, 289-321 (1900)