Wang, Ren-Hong Recent researches on multivariate spline and piecewise algebraic variety. (English) Zbl 1152.41009 J. Comput. Appl. Math. 221, No. 2, 460-471 (2008). A preview of some recent results on multivariate spline, piecewise algebraic variety (curve) and their applications is given in twenty theorems. Reviewer: Ljubiša Kocić (Niš) Cited in 4 Documents MSC: 41A15 Spline approximation Keywords:Multivariate spline; Computational geometry; Piecewise algebraic variety PDF BibTeX XML Cite \textit{R.-H. Wang}, J. Comput. Appl. Math. 221, No. 2, 460--471 (2008; Zbl 1152.41009) Full Text: DOI OpenURL References: [1] Deng, J.S.; Chen, F.L.; Feng, Y.Y., Dimensions of spline spaces over T-meshes, Journal of computational and applied mathematics, 194, 267-283, (2006) · Zbl 1093.41006 [2] Eisenbud, D.; Green, M.; Harris, J., Cayley – bacharach theorems and conjectures, Bulletin of the American mathematical society, 33, 295-324, (1996) · Zbl 0871.14024 [3] Hartshorn, R., Algebraic geometry, (1977), Springer-Verlag New York [4] Lang, F.G.; Wang, R.H., Multivariate weak spline space and minimal determining set, Mathematica numerica sinica, 27, 71-80, (2005), (in Chinese) [5] Li, C.J.; Wang, R.H.; Zhang, F., Improve on the dimensions of spline spaces on T-mesh, Journal of information and computational science, 3, 2, 235-244, (2006) [6] Liang, X.Z.; Lu, C.M., Properly posed set of nodes for bivariate Lagrange interpolation, (), 189-196 · Zbl 0919.41002 [7] Luo, Z.X., Generator bases of modules in \(K [X]^m\) and their application, Acta Mathematica sinica, 44, 6, 983-994, (2001) · Zbl 1095.13520 [8] Luo, Z.X.; Wang, R.H., Structure and dimension of multivariate spline space of lower degree on arbitrary triangulation, Journal of computational applied mathematics, 195, 1, 113-133, (2006) · Zbl 1097.65026 [9] Sederberg, T.W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and T-nurccs, ACM transactions on graphics, 22, 3, 477-484, (2003) [10] Sederberg, T.W.; Cardon, D.L.; Finnigan, G.T.; North, N.S.; Zheng, J.; Lyche, T., T-spline simplification and local refinement, ACM transactions on graphics, 23, 3, 276-283, (2004) [11] Shi, X.Q.; Wang, R.H., Bezout’s number for piecewise algebraic curves, Bit, 2, 339-349, (1999) · Zbl 0933.65017 [12] Walker, R.J., Algebraic curves, (1950), Princeton University Press Princeton · Zbl 0039.37701 [13] Wang, R.H., The structural characterization and interpolation for multivariate splines, Acta Mathematica sinica, 18, 91-106, (1975), (English transl. Acta Mathematica Sinica 18 (1975) 10-39) · Zbl 0358.41004 [14] R.H. Wang, Multivariate weak spline, in: Proc. The National Conference on Numerical Analysis, GuangZhou, 1979 [15] Wang, R.H., Multivariate spline and algebraic geometry, Journal of computational and applied mathematics, 121, 153-163, (2000) · Zbl 0960.41008 [16] Wang, R.H., Multivariate spline functions and their applications, (2001), Science Press/Kluwer Pub. Beijing/New York [17] R.H. Wang, J. Chen, C.J. Li, The dimension of spline space on quasi-rectangular partition, Journal of Mathematical Research and Exposition (in press) [18] R.H. Wang, D.X. Gong, The Bezout number of piecewise algebraic curves, manuscript · Zbl 1274.14042 [19] R.H. Wang, F.G. Lang, Multivariate spline space over cross-cut partition, Computers & Mathematics with Applications. doi:10.1016/j.camwa.2007.01.030 · Zbl 1125.41007 [20] R.H. Wang, F.G. Lang, Multivariate weak spline spaces, manuscript [21] Wang, R.H.; Xu, Z.Q., Multivariate weak spline function space, Journal of computational and applied mathematics, 144, 291-299, (2002) · Zbl 1072.41501 [22] Wang, R.H.; Xu, Z.Q., The estimates of Bezout numbers for the piecewise algebraic curves, Science in China (series A), 33, 2, 185-192, (2003) [23] Wang, R.H.; Zhu, C.G., Nöther-type theorem of piecewise algebraic curves, Progress in natural science, 14, 309-313, (2004) · Zbl 1083.14525 [24] Wang, R.H.; Zhu, C.G., Piecewise algebraic varieties, Progress in natural science, 14, 568-572, (2004) · Zbl 1083.14526 [25] Wang, R.H.; Zhu, C.G., Cayley – bacharach theorem of piecewise algebraic curves, Journal of computational and applied mathematics, 163, 269-276, (2004) · Zbl 1070.14034 [26] Z.Q. Xu, Multivariate splines, piecewise algebraic curves and linear diophantine equations, Ph.D. Thesis, Dalian University of Technology, China, 2003 [27] Zhu, C.G.; Wang, R.H., Piecewise semialgebraic sets, Journal of computational mathematics, 23, 503-512, (2005) · Zbl 1084.14058 [28] Zhu, C.G.; Wang, R.H., Lagrange interpolation by bivariate splines on cross-cut partitions, Journal of computational and applied mathematics, 195, 326-340, (2006) · Zbl 1097.65023 [29] Zhu, C.G.; Wang, R.H., Nöther-type theorem and its application, Journal of information and computational science, 3, 365-372, (2006) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.